Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Áp dụng tính chất đường phân giác của tam giác ta có:
\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{18}=\frac{2}{3}\)
\(\Rightarrow\frac{BD}{2}=\frac{DC}{3}=\frac{BD+DC}{2+3}=\frac{BC}{5}\Rightarrow\frac{BD}{BC}=\frac{2}{5}\)
Kẻ \(DK//BE\left(K\in AC\right)\text{ ta có:}\)
\(\frac{AE}{EK}=\frac{AI}{ID}=2;\frac{EK}{EC}=\frac{BD}{BC}=\frac{2}{5}\)
Do đó:\(\frac{AE}{EK}\cdot\frac{EK}{EC}=\frac{AE}{EC}=\frac{2}{5}.2=\frac{4}{5}\)
b)\(\text{Ta có:}\)
\(\frac{AE}{EC}=\frac{4}{5}\Rightarrow\frac{AE}{4}=\frac{EC}{5}=\frac{AE+EC}{4+5}=\frac{AC}{9}=\frac{18}{9}=2\)
\(\Rightarrow AE=8cm,EC=10cm\)
bn ơi bài 1 ý a) chỉ có thể tính tỉ lệ thôi ko tính đc ra số hẳn đâu
a, Xét △ABC vuông tại A và △MDC vuông tại M
Có: ∠ACB là góc chung
=> △ABC ᔕ △MDC (g.g)
b, Xét △ABC vuông tại A có: AB2 + AC2 = BC2 (định lý Pytago)
=> 362 + 482 = BC2 => BC2 = 3600 => BC = 60 (cm)
Vì M là trung điểm BC (gt) => MB = MC = BC : 2 = 60 : 2 = 30 (cm)
Vì △ABC ᔕ △MDC (cmt) \(\Rightarrow\frac{AB}{MD}=\frac{AC}{MC}\) \(\Rightarrow\frac{36}{MD}=\frac{48}{30}\)\(\Rightarrow MD=\frac{36.30}{48}=22,5\) (cm)
và \(\frac{AC}{MC}=\frac{BC}{DC}\)\(\Rightarrow\frac{48}{30}=\frac{60}{DC}\)\(\Rightarrow DC=\frac{30.60}{48}=37,5\) (cm)
c, Xét △BME vuông tại M và △BAC vuông tại A
Có: ∠MBE là góc chung
=> △BME ᔕ △BAC (g.g)
\(\Rightarrow\frac{BM}{AB}=\frac{BE}{BC}\) \(\Rightarrow\frac{30}{36}=\frac{BE}{60}\)\(\Rightarrow BE=\frac{30.60}{36}=50\) (cm)
Vì M là trung điểm BC (gt) mà ME ⊥ BC (gt)
=> ME là đường trung trực BC
=> EC = BE
Mà BE = 50 (cm)
=> EC = 50 (cm)
e, Ta có: \(\frac{S_{\text{△}MDC}}{S_{\text{△}ABC}}=\frac{\frac{1}{2}.MD.MC}{\frac{1}{2}.AB.AC}=\frac{22,5.30}{36.48}=\frac{675}{1728}=\frac{25}{64}\)
P/s: Sao nhiều câu cùng tính EC vậy? Pls, không làm loãng câu hỏi
Bài làm
@Mấy bạn bên dưới: nghiêm cấm không trả lời linh tinh, nhất bạn luffy toán học, bạn rảnh đến nỗi cũng hùa theo họ mà spam linh tinh à.
a) Xét tam giác ABC và tam giác MDC có:
\(\widehat{BAC}=\widehat{DMC}=90^0\)
\(\widehat{BCA}\)chung
=> Tam giác ABC ~ tam giác MDC ( g - g )
b) Xét tam giác ABC vuông tại A có:
Theo pytago có:
BC2 = AB2 + AC2
hay BC2 = 362 + 482
hay BC2 = 1296 + 2304
=> BC2 = 3600
=> BC = 60 ( cm )
Mà M là trung điểm BC
=> BM = MC = BC/2 = 60/2 = 30 ( cm )
Vì tam giác ABC ~ tam giác MDC ( cmt )
=> \(\frac{AB}{MD}=\frac{BC}{DC}=\frac{AC}{MC}\)
hay \(\frac{36}{MD}=\frac{60}{DC}=\frac{48}{30}\)
=> \(MD=\frac{36.30}{48}=22,5\left(cm\right)\)
=> \(DC=\frac{60.30}{48}=37,5\left(cm\right)\)
c) Xét tam giác MBE và tam giác ABC có:
\(\widehat{BME}=\widehat{BAC}=90^0\)
\(\widehat{ABC}\)chung
=> Tam giác MBE ~ tam giác ABC ( g - g )
=> \(\frac{ME}{AC}=\frac{BM}{AB}\)
hay \(\frac{ME}{48}=\frac{30}{36}\Rightarrow ME=\frac{48.30}{36}=40\left(cm\right)\)
Xét tam giác MEC vuông tại M có:
EC2 = MC2 + ME2
hay EC2 = 302 + 402
=> EC2 = 900 + 1600
=> EC2 = 50 ( cm )
a) Vì tam giác MDC ~ Tam giác ABC
=> \(\frac{S_{\Delta MDC}}{S_{\Delta ABC}}=\left(\frac{MD}{AB}\right)^2=\left(\frac{22,5}{36}\right)^2=\left(\frac{5}{8}\right)^2=\frac{25}{36}\)
Câu c, d và câu đ giống nhau ?
a: BC=15cm
=>AM=7,5cm
b: Xét tứ giác AEMF có góc AEM=góc AFM=góc FAE=90 độ
nên AEMF là hình chữ nhật
A;áp dụng pitago ta có : BC2 = 202+152=625
suy ra : BC= \(\sqrt{625}\) =25
Xét tam giác :\(\Delta abc\)và \(\Delta ahc\)ta có :
\(\widehat{c}\) ( góc chung)
\(\widehat{ahc}\)= \(\widehat{bac}\) = 90 độ
vậy \(\Delta ABC\)đồng dạng với \(\Delta AHC\)( g-g)
suy ra : \(\frac{15}{25}\)= \(\frac{AH}{20}\)
vậy AH= 12 cm \(\left(ĐPCM\right)\)
B) ta có :áp dụng pitago ta có: BH^2 = 15^2-12^2=81 cm
vậy BH =\(\sqrt{81}\)=\(9\)cm
áp dụng đường phân giác trong tam giác ta lại có
\(\frac{DH}{DB}\)= \(\frac{15}{12}\)
\(_{_{ }\Leftrightarrow}\)\(\frac{9-DB}{DB}\) = \(\frac{15}{12}\)
\(\Leftrightarrow\) \(\left(9-DB\right)\)\(_{\times}\) \(12\)= \(15\times DB\)
\(\Leftrightarrow\) 108 -12DB=15DB
\(\Leftrightarrow\) 108 = 15DB+12DB
\(\Rightarrow\)DB=4 cm \(\left(ĐPCM\right)\)
DH= BH - BD= 9 - 4=5 \(\left(ĐPCM\right)\)
phần C mình gửi sau nhé bạn xin lỗi nhé ^_^
\(GIẢI\)\(TIEP\)
ta có : \(\widehat{HCF}\)= \(\widehat{CHA}\) =\(90\)độ ( giả thiết)
mà hai góc này lại ở vị trí sole trong suy ra :HA song song với CF
suy ra: \(\widehat{CFH}\)= \(\widehat{AHF}\) ( HAI GÓC SOLE TRONG )
\(\widehat{FCA}\) =\(\widehat{HAC}\)( HAI GÓC SOLE TRONG )
TỪ hai điều trên suy ra : \(\widehat{CMF}\)= \(\widehat{HMA}\)
mà hai góc này lại ở vị trí đối đỉnh của CA và HF suy ra:
HMF thẳng hàng