Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương pháp: Xác định góc giữa hai mặt phẳng α ; β :
- Tìm giao tuyến ∆ của α ; β
- Xác định 1 mặt phẳng γ ⊥ △
- Tìm các giao tuyến a = α ∩ γ , b = β ∩ γ
- Góc giữa hai mặt phẳng α ; β : α ; β = a;b
Cách giải: Kẻ OH ⊥ AM, H ∈ AM, OK ⊥ SH, K ∈ SH
Vì
=> AM ⊥ OK
Mà OK ⊥ SH => OK ⊥ (SAM) => d(O;(SAM)) = OK = 2
Ta có: ( vì AM ⊥ OH, AM ⊥ SO)
Mà (SOH) ∩ (OAM) = OH; (SOH) ∩ (SAM) = SH => ((SAM);(OAM)) = (SH;OH) = S H O ^ = 30 0
Tam giác OHK vuông tại K
Tam giác SOH vuông tại O
Tam giác OAM cân tại O, A O M ^ = 60 0 , OH ⊥ AM
Tam giác OHM vuông tại H
Thể tích khối nón:
Đáp án C
Phương pháp:
+) Chứng minh mặt phẳng (P) không cắt đáy (O';R)
+) Tìm phần hình chiếu của mặt phẳng (P) trên mặt đáy. Tính S h c
+) Sử dụng công thức S h c = S . cos 60
Cách giải:
Gọi M là trung điểm của AB ta có:
O M = O A 2 − A B 2 2 = R 2 − 3 R 2 4 = R 2
Giả sử mặt phẳng (P) cắt trục OO’ tại I. Ta có : IA = IB nên Δ I A B cân tại I, do đó M I ⊥ A B
Vậy diện tích phần thiết diện cần tìm là :
Chọn đáp án B
Phương pháp
+ Từ giả thiết ta viết được phương trình đường tròn và phương trình parabol
+ S 1 là phần diện tích giới hạn bởi parabol; đường tròn và hai đường thẳng x=2;x=-2. Từ đó sử dụng công thức diện tích hình phẳng bằng ứng dụng tích phân để tính S 1 .
Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y=f(x);y=g(x) và hai đường thẳng x=a;x=b là
Đáp án B
Kẻ đường sinh AA’, gọi D là điểm đối xứng A’ qua tâm O’.
Kẻ BH vuông góc với A ' D ⇒ B H ⊥ A O O ' A ' ⇒ V O O ' A B = 1 3 . B H . S Δ O O ' A
Mà S Δ O O ' A = 1 2 . O O ' . O A = 2 a 2 ⇒ V O O ' A B = 2 a 2 3 x B H
Để V O O ' A B lớn nhất ⇔ B H = B O ' H ≡ O ' ⇒ A ' B = 2 a 2
Tam giác AA’B vuông tại A’, có tan A B A ' ^ = A A ' A ' B = 2 a 2 a 2 = 1 2
Vậy A B ; O ' ^ = A B ; A ' B ^ = A B A ' ^ = α ⇒ tan α = 1 2
Lấy điểm A ' ∈ O ' ; B ' ∈ O sao cho A A ' ; B B ' song song với trục O O ' .
Khi đó ta có lăng trụ đứng O A B ' . O ' A ' B .
Ta có:
Chọn A.
Phương pháp:
+ Gọi C là hình chiếu của A lên mặt đáy chứa đường tròn O ' ; R và D là hình chiếu của B lên mặt đáy chứa đường tròn (O;R).
+) Tính thể tích lăng trụ đứng O A D . O ' C B , từ đó suy ra thể tích tứ diện OO'AB và đánh giá.
Cách giải:
Chọn: D