K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có OA = OB = BC = OC

Sđ \(\widehat{BN}\)+ Sđ \(\widehat{BM}=Sđ\widehat{AB}=\widehat{AOB}=60^0\)

\(\Rightarrow\widehat{MBN}=\dfrac{360^0-60^0}{2}=150^0\)

Câu 44. Trên đường tròn (O;R) lấy 3 điểm A, B sao cho AB = BC = R, M, N là trung điểm của 2 cung nhỏ AB và BC thì số đo góc MBNlà:A. 1200                  B. 1500                  C. 2400                           D. 1050Câu 45: Hai tiếp tuyến tại A và B của đường trũn (O;R) cắt nhau tại M . Nếu MA = \(R\sqrt{3}\)thì góc ở tâm AOB bằng :A.  1200             B. ...
Đọc tiếp

Câu 44. Trên đường tròn (O;R) lấy 3 điểm A, B sao cho AB = BC = R, M, N là trung điểm của 2 cung nhỏ AB và BC thì số đo góc MBNlà:

A. 1200                  B. 1500                  C. 2400                           D. 1050

Câu 45: Hai tiếp tuyến tại A và B của đường trũn (O;R) cắt nhau tại M . Nếu MA = \(R\sqrt{3}\)thì góc ở tâm AOB bằng :

A.  1200             B.  900              C.  600             D . 450

Câu 46:Tam giác ABC nội tiếp trong nửa đường tròn đường kính AB = 2R. Nếu góc AOC = 1000 thì cạnh AC bằng :

A. Rsin500        B. 2Rsin1000    C. 2Rsin500     D.Rsin800

Câu 47: Tìm câu sai:

A.    Hai cung bằng nhau thỡ cú số đo bằng nhau

B.     Trong một đường trũn hai cung số đo bằng nhau  thỡ  bằng nhau

C.     Trong hai cung , cung nào có số đo lớn hơn thỡ cung lớn hơn

D.    Trong hai cung trên cùng một đường trũn, cung nào cú số đo nhỏ hơn thỡ nhỏ hơn

Câu 48: Hai tiếp tuyến tại A và B của đường trũn(O; R) cắt nhau tại  M  sao cho MA = \(R\sqrt{3}\)  . Khi đó góc ở tâm có số đo bằng :

A.300                     B. 600          C. 1200                  D . 900

Câu 49:Cho tam giác ABC nội tiếp đường tròn (O) biết góc B = C = 600. Khi đó gócAOB có số đo là :

A . 1150          B.1180               C. 1200          D. 1500

Câu 50: Trên đường tròn tâm O bán kính R lấy hai điểm A và B sao cho AB = \(R\sqrt{2}\). Số đo góc ở tâm AOB(()  chắn cung nhỏ AB có số đo là :

A.300             B. 600                C. 900             D . 1200

Câu 51:Cho TR là tiếp tuyến của đường tròn  tâm O . Gọi S là giao điểm của OT với (O)  . Cho biết sđ SR = 670 . Số đo góc OTR bằng :

        A. 230                 B. 460                    C.670          D.1000

1

Câu 44: A

Câu 45: A

Câu 46: B
Câu 47: C

5 tháng 2 2018

+) Có A,B thuộc đường tròn (O;R) 

=> OA = OB = R Mà AB = R

=> OA = OB = AB => tam giác AOB đều ( định nghĩa tam giác đều)

=> góc AOB = 60 độ ( tính chất tam giác đều)

Trong đường tròn (O;R) có góc AOB là góc ở tâm chắn cung AB nhỏ 

=> số đo cung AB nhỏ = góc AOB = 60 độ (tính chất góc ở tâm )

+) Có B,C thuộc đường tròn (O;R) => OB=OC=R

Có OB^2 + OC^2 = R^2 + R^2= 2*R^2 = BC^2 ( vì BC = R\(\sqrt{2}\) )

=> tam giác BOC vuông ở O ( định lý Py-ta-go đảo )

=> góc BOC = 90 độ

Trong đường tròn (O;R) có góc BOC là góc ở tâm chắn cung BC nhỏ 

=> góc BOC = số đo cung BC nhỏ ( tính chất góc ở tâm) => số đo cung BC nhỏ = 90 độ

+) Vì tia BO nằm giữa 2 tia BA và BC nên B nằm giữa A và C

=> số đo cung AB nhỏ + số đo cung BC nhỏ = số đo cung AC nhỏ

=> số đo cung AC nhỏ = 60 độ + 90 độ = 150 độ

k cho mk nha !!!!!!!!!!!

27 tháng 6 2020

Từ một điểm A nằm bên ngoài đường tròn ( O ), kẻ các tiếp tuyến AB, AC với đường tròn ( B,C là các tiếp điểm )

a) Chứng minh rằng ABOC là tứ giác nội tiếp

b)Cho bán kính đường tròn ( O ) bằng 3cm, độ dài đoạn thẳng OA bằng 5cm. Tính độ dài đoạn thẳng BC

c) Gọi ( K ) là đường tròn qua A và tiếp xúc với đường thẳng BC tạo C. Đường trknf (K) và đường tròn (O ) cắt nhau tại điểm thứ hai là M. Chứng minh rằng đường thẳng BM đi qua trung điểm của đoạn thẳng AC

a: Xet ΔOAC có OA=OC và OA^2+OC^2=AC^2

nên ΔOAC vuôg cân tại O

b: \(BC=\sqrt{AB^2-AC^2}=\sqrt{4R^2-2R^2}=R\sqrt{2}\)

c: ΔOAC vuông cân tại O

=>góc BAC=45 độ

 

9 tháng 4 2016

Đổi: 675km = 67 500 000cm

Trên bản đồ tỉ lệ 1:2 500 000 quãng đường dài là:

67 500 000 : 2 500 000 = 27 (cm)

Đáp số: 27 cm 

Xin lỗi nha

9 tháng 4 2016

Trả lời lộn câu rồi bạn

AC=AD

OC=OD

=>AO là trung trực của CD

=>OA vuông góc CD tại I

góc AMB=1/2*180=90 độ

góc KMB+góc KIB=180 độ

=>KMBI nội tiếp

15 tháng 1 2021

Câu 1 : 

Xét ΔCHO vuông tại H , có : cos COH = \(\dfrac{OH}{OC }\)( tỉ số lượng giác ) 

⇔ cos COH = \(\dfrac{R/2}{R}\)=\(\dfrac{1}{2}\)=> \(\widehat{COH }\) = 60 độ 

=> \(\widehat{BC }\) = \(\widehat{COH }\) = 60 độ 

C/m tương tự =>​ \(​​​​\widehat{BD }\) = 60 độ . Ta có \(\widehat{BC }\) + \(​​​​\widehat{BD }\)  = 60 + 60 = 120 độ 

còn lại bạn tự làm nốt nhá 

  
20 tháng 7 2019

A B C O D E S F N M I

a) Bổ đề: Xét tam giác ABC cân tại A, một điểm M bất kì sao cho ^AMB = ^AMC. Khi đó MB = MC.

Bổ đề chứng minh rất đơn giản, không trình bày ở đây.

Áp dụng vào bài toán: Vì E là điểm chính giữa (BC nên EB = EC = ED => \(\Delta\)BED cân tại E

Ta có ^BAE = ^CAE (2 góc nội tiếp chắn hai cung bằng nhau) hay ^BAE = ^DAE

Áp dụng bổ đề vào \(\Delta\)BED ta được AB = AD. Khi đó AE là trung trực của BD => AE vuông góc BD

Lại có \(\Delta\)BAD ~ \(\Delta\)CFD (g.g). Mà AB = AD nên FD =FC. Từ đó EF vuông góc DC

Xét \(\Delta\)AEF có FD vuông góc AE (cmt), AD vuông góc EF (cmt) => D là trực tâm \(\Delta\)AEF (đpcm).

b) Gọi DN cắt EC tại I. Ta dễ thấy ^MDI = ^MDN = ^MBN = ^MBC = ^MEC = ^MEI

Suy ra bốn điểm D,E,M,I cùng thuộc một đường tròn => ^EMD = ^EID = 900

Nếu ta gọi MD cắt cung lớn BC của (O) tại S thì ^EMS chắn nửa (O) hay ES là đường kính của (O)

Mà E là điểm chính giữa cung nhỏ BC nên S là điểm chính giữa cung lớn BC

Do đó S là điểm cố định (Vì B,C cố định). Vậy MD luôn đi qua S cố định (đpcm).