K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2019

4 tháng 2 2023

vẽ Hình và giải giúp tui

 

Xét ΔACD và ΔBCD co

AC=BC

CD chung

AD=BD

=>ΔACD=ΔBCD

22 tháng 12 2016

A B C x E

Giải:
a) Xét \(\Delta BAC,\Delta ECA\) có:

\(AB=CE\left(gt\right)\)

\(\widehat{BAC}=\widehat{ECA}\left(=90^o\right)\)

\(AC\): cạnh chung

\(\Rightarrow\Delta BAC=\Delta ECA\left(c-g-c\right)\)

\(\Rightarrow BC=AE\) ( cạnh t/ứng ) ( đpcm )

\(\Rightarrow\widehat{BCA}=\widehat{EAC}\) ( góc t/ứng )

Mà 2 góc trên ở vị trí so le trong nên BC // AE ( đpcm )

b) Ta có: \(\widehat{EAC}+\widehat{ECA}=\widehat{AEx}\) ( góc ngoài \(\Delta ECA\) )

\(\Rightarrow\widehat{EAC}+90^o=120^o\)

\(\Rightarrow\widehat{EAC}=30^o\)

\(\widehat{BCA}=\widehat{EAC}\Rightarrow\widehat{BCA}=30^o\)

Xét \(\Delta ABC\) có: \(\widehat{BCA}+\widehat{ABC}=90^o\) ( do \(\widehat{A}=90^o\) )

\(\Rightarrow\widehat{ABC}=60^o\) ( do \(\widehat{BCA}=30^o\) )

Vậy...

 

 

22 tháng 12 2016

bạn vẽ sai hình kìa

a.OC=OA+AC

OD=OB+BD
mà OA=OB(gt);AC=BD(gt)

=>OC=OD

Xét tam giác OAD và tam giác OBC có:OA=OB(gt)

                                                                góc O chung

                                                                OD=OC(cmt)

                                                      =>tam giác OAD=tam giác OBC(c.g.c)=>AD=BC(hai cạnh tương ứng)(đpcm)

b.tam giác OAD=tam giác OBC(câu a)=>góc OAD=góc OBC(hai góc tương ứng)

                                                                 góc ODA=góc OCB(hai góc tương ứng) hay góc BDE=góc ACE

góc OAD+góc DAC=180 độ (hai góc kề bù)

góc OBC+góc CBD=180 độ (hai góc kề bù)

=>góc DAC=góc CBD hay góc EAC=góc EBD

Xét tam giác EAC và tam giác EBD có:

Góc ACE=góc BDE(cmt)

AC=BD(gt)

góc EAC=góc EBD(cmt)

=>tam giác EAC=tam giác EBD(g.c.g)(đpcm)

c.tam giác EAC=tam giác EBD(câu b)=>EC=ED(hai cạnh tương ứng)

Xét tam giác OEC và tam giác OED có:

OC=OD(câu a)

EC=ED(cmt)

OE chung

=>tam giác OEC=tam giác OED(c.c.c)

=>góc EOC=góc EOD(hai góc tương ứng)=>OE là phân giác góc COD hay OE là phân giác góc xOy (đpcm)

24 tháng 12 2022

Cho góc nhọn xOy. Trên tia Ox lấy điểm A và C sao cho OA < OC, trên tia Oy lấy điểm B và D sao cho OA = OB ; OC = OD. Gọi E là giao điểm của AD và BC. a) Chứng minh: AD = BC. b) Chứng minh: ∆EAC = ∆EBD. c) Chứng minh: OE là tia phân giác của góc xOy. (ảnh 1)

a) Chứng minh: AD = BC.

Xét ∆OAD và ∆OBC có:

OA = OB (gt);

ˆAODAOD^ chung;

OD = OC (gt)

Do đó ∆OAD = ∆OBC (c.g.c)

Suy ra AD = BC (hai cạnh tương ứng)

b) Chứng minh: ∆EAC = ∆EBD.

Vì ∆OAD = ∆OBC (câu a)

Nên ˆA2=ˆB2A^2=B^2 (hai góc tương ứng)

Mà ˆA1+ˆA2=180oA^1+A^2=180oˆB1+ˆB2=180oB^1+B^2=180o (kề bù)

Do đó ˆA1=ˆB1A^1=B^1.

Mặt khác, OA = OB, OC = OD

Suy ra OC – OA = OD – OB

Do đó AC = BD

Xét ∆EAC và ∆EBD có:

ˆA1=ˆB1A^1=B^1 (cmt);

AC = BD (cmt);

ˆOCB=ˆODAOCB^=ODA^ (vì ∆OAD = ∆OBC)

Do đó ∆EAC = ∆EBD (g.c.g).

c) Chứng minh: OE là tia phân giác của góc xOy.

Vì ∆EAC = ∆EBD (câu b)

Nên AE = BE (hai cạnh tương ứng).

Xét ∆OAE và ∆OBE có:

OA = OB (gt);

Cạnh OE chung;

AE = BE (cmt)

Do đó ∆OAE và ∆OBE (c.c.c)

Suy ra ˆAOE=ˆBOEAOE^=BOE^ (hai góc tương ứng)

Hay OE là phân giác của góc xOy.

a: Xét ΔABD và ΔAED có

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

b: Ta có: ΔABD=ΔAED

nên DB=DE và \(\widehat{ABD}=\widehat{AED}=90^0\)

hay DE\(\perp\)AC

c: Xét ΔDBF vuông tại B và ΔDEC vuông tại E có

DB=DE

BF=EC

Do đó: ΔDBF=ΔDEC

Suy ra: \(\widehat{BDF}=\widehat{EDC}\)

=>\(\widehat{BDF}+\widehat{BDE}=180^0\)

hay F,D,E thẳng hàng