Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đt tâm O đường kính AH cắt AB tại M, AC tại N.
1. Chứng minh rằng MN là đường kính của đt O và tứ giác BMNC nội tiếp.
2. Gọi I là trung điểm của BC, lấy P là điểm đối xứng vs A qua I, gọi Q là trung điểm của HP gọi K là giao điểm của MN và AI.
a, Chứng minh rằng AI vuông góc vs MN
b, Chứng minh rằng Q là tâm đường tròn ngoại tiếp tứ giác BMNC
bn đăng những câu này ít người trả lời tử tế lắm ha
a)
Theo tính chất 2 tiếp tuyến cắt nhau (MAMA, MCMC) thì MA=MCMA=MC
Mà OA=OC=ROA=OC=R
⇒MO⇒MO là đường trung trực của ACAC
⇒MO⊥AC⇒MEAˆ=900(1)⇒MO⊥AC⇒MEA^=900(1)
Lại có:
ADBˆ=900ADB^=900 (góc nt chắn nửa đường tròn)
⇒MDAˆ=1800−ADBˆ=900(2)⇒MDA^=1800−ADB^=900(2)
Từ (1);(2) ⇒MEAˆ=MDAˆ⇒MEA^=MDA^. Mà 2 góc này cùng nhìn cạnh MAMA nên tứ giác AMDEAMDE là tgnt.
cảm ơn bn
nhưng mik còn câu c thôi
mà bn chép mạng cx chọn cái chép đi chứ, chép thừa r