K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2018

a) Xét tam giác MCB, ta có :

CE = ME (GT)

CF = FB (GT)

Nên EF là đường trung bình của tam giác MCB

=> EF // MB

=> EF // AB (Vì M € AB) (1)

Xét tam giác ADM ,ta có :

AK = KD (GT)

MI = ID (GT)

Nên IK là đường trung bình của tam giác ADM

=> IK // AM

=> IK // AB (Vì M € AB) (2)

Từ (1) và (2) => EF // IK

b) Xét tứ giác KIFE ,ta có :

EF // IK [câu (a)]

=> KIFE là hình thang

Sau đó bạn cần chứng minh cho góc K = góc I hoặc góc E = góc F

Do đó KIFE sẽ là hình thang cân

Vậy EI = KF

[ Ở câu b) này chỉ là tớ dự đoán phương hướng giải thôi ,chứ tớ cũng không biết có làm được không.]

c) Xét tam giác MCD ,ta có :

ME = CE (GT)

MI = ID (GT)

Nên EI là đường trung bình của tam giác MCD

=> EI = 1/2 CD (3)

mà EI = KF (4)

Từ (3) và (4) => KF = 1/2 CD

14 tháng 10 2018

a)tứ giác

6 tháng 10 2021

Đáp án:

a) EFIK là hình thang cân.

b) FK = 1/2 MD.

Giải thích các bước giải:

Ta có: EF là đường TB của tam giác MBC => EF // BC.

IK là đường TB của tam giác ABD => IK // AB

=> EF // IK => EFIK là hình thang.

Ta có: Gọi N là trung điểm của BC ta có EF // NC, EF = NC => EFNC là hình bình hành => FN // EC

IN là đường TB của tam giác BCD => IN // BD.

Mà BD // MC (góc MCA = góc DBC = 60 độ, mà 2 góc này ở vị trí đồng vị).

=> IN // MC

=> F, I, N thẳng hàng.

=> FI // MC.

Mà IK // AC => góc FIK = góc MCA = 60 độ.

CMTT ta có KE // MA. Mà KI // AC

=> góc EKI = góc MAC = 60 độ.

=> EFIK là hình thang cân.

=> EI = KF.

Mà EI là đường TB của tam giác CDM => EI = ½ MD

=> KF = ½ MD.

image

25 tháng 8 2016

Cô hướng dẫn nhé.

a. FH // MC; KH // BD (Đường trung bìnhP

Vậy mà MN // DB (Góc đồng vị bằng nhau) nên  FH và KH cùng song song một đường thẳng. Vậy F , K , H thẳng hàng. Tương tự với E, I ,N.

b. EF // CH; IK // AC nên EF // IK. Vậy EFIK là hình thang.

Lại có \(\widehat{EIK}=\widehat{ENH}=\widehat{FHN}=\widehat{FKI}\) nên nó là hình thang cân.

c. Em xem lại đề nhé.

22 tháng 6 2016
vex hinhf ddi rooif minhf lamf cho
25 tháng 6 2016

vẽ hình đi 

27 tháng 8 2017

A C B E F K I P M Q D

. Xét \(\Delta\) CMB có EF là đường trung bình của \(\Delta\).

\(\Rightarrow\) EF // MB \(\Rightarrow\) EF // AB. (1)

Xét \(\Delta\)ADM có KI là đường trung bình của \(\Delta\).

\(\Rightarrow\) KI // AM \(\Rightarrow\) KI // AB. (2)

Từ (1) và (2)

\(\Rightarrow\) Tứ giác EFIK là hình thang (*)

Gọi P; Q lần lượt là trung điểm của AM và BN.

Xét \(\Delta\) ACM có PE là đường trung bình của \(\Delta\).

\(\Rightarrow\) PE // AC mà AC // MD (Do góc A = góc M = 60 ở vị trí đồng vị)

\(\Rightarrow\) PE // MD (3)

Mặt khác \(\Delta\)ADM có PK là đường trung bình của \(\Delta\).

\(\Rightarrow\) PK // MD (4)

Từ (3) và (4)

\(\Rightarrow\) P; E; K thẳng hàng mà PE // AC nên KE // AC (5).

Từ (2) và (5)

\(\Rightarrow\) CAB = EKI (Hai góc nhọn có cạnh tương ứng song song)

Mà CAB = 60 độ \(\Rightarrow\) EKI = 60 độ (**)

Chứng minh tương tự ta được F; I; Q thẳng hàng mà QF // MC nên IF // MC;

Lại có MC // BD nên FI // BD (6).

Từ (2) và (6)

\(\Rightarrow\) DBA = FIK (Hai góc nhọn có cạnh tương ứng song song)

Mà DAB = 60 độ

\(\Rightarrow\) FIK = 60 độ (***)

Từ (*); (**) và (***)

\(\Rightarrow\) EFIK là hình thang cân (Hình thang có 2 góc ở đáy bàng nhau là hình thang cân)

\(\Rightarrowđcpm\)