K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2018

Đáp án là D.

Xét phương trình hoành độ giao điểm  sin x = cos x ⇔ sin x − cos x = 0       ∗

Số giao điểm của hai đồ thị hàm số chính là số nghiệm của phương trình (*) trên − 2 π ; 5 π 2 .

Khi đó ta có sin x − cos x = 0 ⇔ 2 sin x − π 4 = 0 ⇔ x = π 4 + k π , k ∈ ℤ .

Mà   x ∈ − 2 π ; 5 π 2 nên ta có − 2 π ≤ π 4 + k π ≤ 5 π 2 − 2 π ≤ π 4 + k π ≤ 5 π 2 .

Hay ta có  k ∈ − 2 ; − 1 ; 0 ; 1 ; 2   .

11 tháng 6 2017

Đáp án B

Phương pháp giải:

Dựa vào đồ thị hàm số xác định hoành độ điểm D suy ra tung độ điểm A chính là độ dài BC

Lời giải: Gọi  với 

Gọi  thuộc đồ thị 

Vì ABCDlà hình chữ nhật

Khi đó BC = m. Mà  

9 tháng 4 2017

18 tháng 6 2018

9 tháng 6 2017

Đáp án C.

 

Phương trình hoành độ giao điểm của hai đồ thị là  x 2 - x = 5 + 3 : x ⇔ x - 3 x + 1 2 = 0 ⇔ x ∈ 3 ; - 1 ⇒ A 3 ; 6 , B - 1 ; 2 ⇒ B A → 4 ; 4 ⇒ A B = 4 2 .

29 tháng 12 2019

Đáp án D

Trên khoảng ( a ; b ) và ( c ; + ∞ ) hàm số đồng biến vì y'>0 đồ thị nằm hoàn toàn trên trục Ox

Hàm số nghịch biến trên các khoảng ( - ∞ ; a ) và (b;c) vì y'<0

Suy ra x=b là điểm cực đại mà y(b) <0 do đó trục hoành cắt đồ thị tại hai điểm phân biệt. Với d<0 ta có

5 tháng 12 2017

Đáp án C

Phương pháp :

+)  Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ m – 2

y = f’(m – 2)(x – m +2)+y(m – 2) (d)

+) Xác định các giao điểm của d và các đường tiệm cận => x2;y1

+) Thay vào phương trình x2 + y1 = –5 giải tìm các giá trị của m.

Cách giải: TXĐ: D = R\ {–2}

Ta có 

=>Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ m – 2 là: 

Đồ thị hàm số  y = x - 1 x + 2  có đường TCN y = 1và tiệm cậm đứng x = –2

2 tháng 1 2019

Đáp án C

18 tháng 10 2019

Đáp án là B

Các mệnh đề (III), (IV) đúng

31 tháng 8 2018

Theo giả thiết có 

Do 

Do đó 

Chọn đáp án A.