K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

a, xét tgACO và tgBEO có: gCAO=gEBO = 90 độ

                                            OA=OB (O là trung điểm của AB)

                                             gAOC = gBOE (hai góc đối đỉnh)

=>tgACO=tgEBO(g.c.g)=>AC=BE;OC=OE (hai cạnh tương ứng)

xét tgCOD và tgEOD có:      OC=OE (cmt)

                                             gCOD=gEOD=90độ

                                             OD là cạnh chung 

=>tgCOD=tgEOD (c.g.c)

=> CD= DE (hai cạnh tương ứng)

mà DE=DB+BE =>CD=DB+BE 

mà BE=AC(cmt)=>CD=AC+BD

b, xét tgCOJ và tgEOJ có : OC=OE (cmt)

                                            gCOJ=gEOJ = 90độ

                                            OJ là cạnh chung

=>tgCOJ=tgEOJ (c.g.c)=>gJCO=gJEO;JC=JE

xét tgCDJ và tgEDJ có: CD=DE (cmt)

                                       DJ là cạnh chung

                                      CJ=EJ (cmt)

=>tgCDJ=tgEDJ (c.c.c)

=>gDCJ=gDEJ 

mà gDCJ = gJCO (CJ là tia phân giác của gOCD)

       gJCO=gJEO (cmt)

=>gDEJ = gJEO =>EJ là tia phân giác của gBEO

                                        

7 tháng 4 2017

ủng hộ mk nha mọi người

22 tháng 5 2018

Bạn tự vẽ hình nha

Câu a

Chứng minh : Kẻ OC cắt BD tại E

Xét ΔCAO và ΔEBO có :

ˆA=^OBE (=1v)

AO=BO (gt)

^COA=^BOE (đối đỉnh)

⇒ΔCAO=ΔEBO (cgv - gn )

⇒OC=OE ( hai cạnh tương ứng )

và AC=BE ( hai cạnh tương ứng )

Xét ΔOCD và ΔOED có :

OC=OE (c/m trên )

^COD=^DOE ( = 1v )

OD chung

⇒ΔOCD=ΔOED (cgv - cgv )

⇒CD=DE (hai cạnh tương ứng )

mà DE = BD + BE

và AC = BE ( c/m trên )

⇒CD=AC+BD