K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2021

Gọi d: y = ax + b là đường thẳng đi qua hai điểm A, B.

Ta có \(\left\{{}\begin{matrix}2a+b=1\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=-3\\b-a=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\).

Do đó đường thẳng đi qua A, B là y = -x + 3.

Thay x = 3 vào ta được y = 0 nên C(3; 0) thuộc đường thẳng đó

Bạn tham khảo hình :

undefinedundefinedundefined

30 tháng 5 2021

a)Tự vẽ

b) Xét pt hoành độ gđ của (P) và (d) có:

\(\dfrac{3}{2}x^2=x+\dfrac{1}{2}\)

\(\Leftrightarrow3x^2-2x-1=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\Rightarrow y=\dfrac{3}{2}.\left(-\dfrac{1}{3}\right)^2=\dfrac{1}{6}\\x=1\Rightarrow y=\dfrac{3}{2}\end{matrix}\right.\)

Vậy gđ của (d) và (P) là \(\left(-\dfrac{1}{3};\dfrac{1}{6}\right),\left(1;\dfrac{3}{2}\right)\)

c) Gọi đt cần tìm có dạng (d') \(y=ax+b\) (a2+b2>0)

Gọi A(-4;y1) và B(2;y2) là hai giao điểm của (P) và (d')

\(A;B\in\left(P\right)\Rightarrow\left\{{}\begin{matrix}y_1=24\\y_2=6\end{matrix}\right.\) 

\(\Rightarrow A\left(-4;24\right),B\left(2;6\right)\) \(\in\left(d'\right)\)

\(\Rightarrow\left\{{}\begin{matrix}24=-4a+b\\6=2a+b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=12\end{matrix}\right.\) (thỏa)

Vậy (d'): y=-3x+12

a) Gọi (d): y=ax+b

Vì (d)//y=2x-3 nên \(\left\{{}\begin{matrix}a=2\\b\ne-3\end{matrix}\right.\)

Vậy: (d): y=2x+b

Vì (d) đi qua điểm C(-1;4) nên 

Thay x=-1 và y=4 vào (d), ta được:

\(2\cdot\left(-1\right)+b=4\)

hay b=6

Vậy: (d): y=2x+6

Thay y=0 vào (d), ta được:

2x+6=0

hay x=-3

Vậy: A(-3;0)

b) Vì y=ax+b đi qua hai điểm B(4;0) và C(-1;4) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}4a+b=0\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=-4\\b=a+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{5}\\b=\dfrac{-4}{5}+4=\dfrac{-4}{5}+\dfrac{20}{5}=\dfrac{16}{5}\end{matrix}\right.\)

6 tháng 7 2021

Tính góc tạo bởi đường thẳng BC và trục hoành Ox đi

a) Gọi (d): y=ax+b

Vì (d)//y=2x-3 nên ta có: \(\left\{{}\begin{matrix}a=2\\b\ne-3\end{matrix}\right.\)

=> (d): y=2x+b

Thay x=-1 và y=4 vào (d), ta được:

\(2\cdot\left(-1\right)+b=4\)

\(\Leftrightarrow b=6\)

Vậy: (D): y=2x+6

Thay y=0 vào (d),ta được:

\(2x+6=0\)

\(\Leftrightarrow x=-3\)

Vậy: A(-3;0)

b) Vì đồ thị hàm số y=ax+b đi qua hai điểm B(4;0) và C(-1;4) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}4a+b=0\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=-4\\-a+b=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{5}\\b=4+a=4+\dfrac{-4}{5}=4-\dfrac{4}{5}=\dfrac{16}{5}\end{matrix}\right.\)

Vậy: \(a=-\dfrac{4}{5}\)\(b=\dfrac{16}{5}\)

c) Độ dài đoạn thẳng AB là:

\(AB=\sqrt{\left(-3-4\right)^2+\left(0-0\right)^2}=7\)(cm)

Độ dài đoạn thẳng AC là:

\(AC=\sqrt{\left(-3+1\right)^2+\left(0-4\right)^2}=2\sqrt{5}\left(cm\right)\)

Độ dài đoạn thẳng BC là:

\(BC=\sqrt{\left(4+1\right)^2+\left(0-4\right)^2}=\sqrt{41}\left(cm\right)\)

Chu vi tam giác ABC là:

\(C_{ABC}=AB+AC+BC\)

\(=7+2\sqrt{5}+\sqrt{41}\)

\(\simeq17,9\left(cm\right)\)

5 tháng 7 2021

Còn thiếu tính góc tạo bởi đường thẳng BC và trục Ox mà bạn

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

Lời giải:

a. Gọi ptdt $(d)$ đi qua $A,B$ là $y=ax+b$

Ta có: \(\left\{\begin{matrix} y_A=ax_A+b\\ y_B=ax_B+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2=a+b\\ 1=a.0+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=1\\ a=1\end{matrix}\right.\)

Vậy ptđt $(d)$ là: $y=x+1$

b. Ta thấy: $y_C=-4=-5+1=x_C+1$ nên $C\in (d): y=x+1$
Tức là $C$ thuộc đt đi qua 2 điểm $A,B$

$\Rightarrow A,B,C$ thẳng hàng.

23 tháng 9 2021

Giả sử đường thẳng d đi qua A và B có dạng: `y=ax+b`

Đường thẳng d đi qua A và B là nghiệm của hệ: `{(2=a.1+b),(0=a.(-1)+b):}`

`<=> {(a=1),(b=1):}`

`=> d:\ y=x+1`

`=> C\ in (d)`

`=>` A,B,C thẳng hàng.

Đường thẳng đi qua 3 điểm đó là: `y=x+1`.

 

23 tháng 9 2021

bạn ơi sao lại => C ∈ (d) vậy

 

1 tháng 12 2021

\(a,\) Gọi đt cần tìm là \(y=ax+b\)

\(\Leftrightarrow\left\{{}\begin{matrix}4a+b=-5\\a=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\Leftrightarrow y=-2x+3\)

\(b,\) Gọi đt cần tìm là \(y=ax+b\)

\(\Leftrightarrow\left\{{}\begin{matrix}8a+b=-1\\b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{4}\\b=1\end{matrix}\right.\Leftrightarrow y=-\dfrac{1}{4}x+1\)

\(c,\) Gọi đt đi qua M và N là \(y=ax+b\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2a+b=-3\\-6a+b=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-2\end{matrix}\right.\Leftrightarrow y=\dfrac{1}{2}x-2\)

Thay \(x=1;y=1\Leftrightarrow1=\dfrac{1}{2}\cdot1-2\Leftrightarrow1=-\dfrac{1}{2}\left(\text{vô lí}\right)\)

\(\Leftrightarrow P\notinđths\)

Vậy 3 điểm này ko thẳng hàng