Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn vao cốc cốc hoặc google đó trog do co nhieu cau giog nhu the
nho bam dug cho mjh nhe fan tfboys
bạn tự vẽ hình nhé:
trên tia GE lấy T sao cho ET=HF
từ HF//AB,GE//AB
=>HF//GE =>^CFH=^FEG=^BET
=> chứng minh được tam giác HFC= tam giác TEB (c.g.c)
=>EG+ET=EG+HF (1)
ta lại có GT//AB và AG//BT (bạn tự chứng minh nhé)
=>^TGB=^GBA và ^AGB=^GBT (2 cặp góc so le trong)
=> chứng minh được tam giác GBA= tam giác BGT(g.c.g)
=>AB=GT=GE+ET=EG+HF (theo (1))
=> AB=EG+HF
Từ E kẻ EM //AC (M thuộc AC)
suy ra góc MEB = góc ACF ( đồng vị)
Lại có FH // AB (GT) suy ra góc HFC = góc ABE (đồng vị)
Xét tam giác MBE và tam giác HFC
có óc MEB = góc ACF (CMT)
BE=CF ( GT)
góc HFC = góc ABE (CMT)
suy ra tam giác MBE = tam giác HFC (g.c.g)
suy ra BM = HF (hai cạnh tương ứng) (1)
Xét tam giác AEM và tam giác EAG
có góc MAE=góc AEG (so le trong vì AB // EG)
AE chung
góc GAE = góc MEA (so le trong vì ME // AG)
suy ra tam giác AEM = tam giác EAG (g.c.g)
suy ra AM = EG (hai cạnh tương ứng) (2)
MÀ AB = AM + BM (3)
Từ (1) và (2) , (3) suy ra AB = EG + FH
Từ E kẻ ED // AC ( D thuộc cạnh AB )
Ta có :
\(\widehat{DBE}=\widehat{HFC}\); \(\widehat{DEB}=\widehat{HCF}\); \(\widehat{DAE}=\widehat{GEA}\); \(\widehat{EDA}=\widehat{AGE}\)
Và ta chứng minh được \(\Delta BDE=\Delta FHC\left(g-c-g\right)\)
\(\Rightarrow\)\(BD=FH\)( 1 )
\(\Delta DAE=\Delta GEA\left(g-c-g\right)\)
\(\Rightarrow\)\(AD=EG\)( 2 )
Từ ( 1 ) ; ( 2 ) suy ra BD + AD = FH + EG hay EG + FH = AB ( Vi D thuộc cạnh AB )
Câu hỏi của Linh Đặng Thị Mỹ - Toán lớp 7 - Học toán với OnlineMath