Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A D B C E F G
Trên tia đối của tia BC lấy G sao cho \(BG=DF=\frac{1}{2}CD\)
Vì \(EC=2EB\Rightarrow EC=\frac{2}{3}BC,EB=\frac{1}{3}BC\)
\(\Rightarrow GE=GB+BE=\frac{1}{2}BC+\frac{1}{3}BC=\frac{5}{6}BC\)
Mà \(\Delta CEF\) vuông tại C
\(\Rightarrow EF=\sqrt{CF^2+CE^2}=\frac{5}{6}BC\Rightarrow EF=GE\)
Lại có :
\(BE=DF,AB=AD\Rightarrow\Delta ABG=\Delta ADF\left(c.g.c\right)\) => AG = AF
\(\Rightarrow\Delta AEG=\Delta AEF\left(c.c.c\right)\) \(\Rightarrow\widehat{AEG}=\widehat{AED}\Rightarrow\widehat{AEB}=\widehat{AEF}\)
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>góc BED=90 độ
=>DE vuông góc CB
c: BA=BE
DA=DE
=>BD là trung trực của AE
d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>F,D,E thẳng hàng
Bài 1:
Xét ΔADO vuông tại D và ΔAEO vuông tại E có
AO chung
\(\widehat{DAO}=\widehat{EAO}\)
Do đó: ΔADO=ΔAEO
Suy ra: OD=OE
Bài 2:
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
b: Xét ΔBDC và ΔCEB có
BD=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
DO đó: ΔBDC=ΔCEB
Suy ra: \(\widehat{ODB}=\widehat{OEC}\)
Xét ΔODB và ΔOEC có
\(\widehat{ODB}=\widehat{OEC}\)
BD=CE
\(\widehat{DBO}=\widehat{ECO}\)
Do đó: ΔODB=ΔOEC