Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Giá trị đại diện của nhóm thứ 4 là: (158 + 156) : 2 = 157.
Chọn C.
Nhóm thứ 5: [158;160)
Giá trị đại diện của nhóm thứ 5 là:
a) Dãy các số liệu chiều cao của các học sinh nam ở bảng 5 có :
\(\overline{x_1}\approx163\left(cm\right);s_1^2\approx134,3;s_1\approx11,59\)
Dãy các số liệu chiều cao của các học sinh nữ cho ở bảng 5 có :
\(\overline{x_2}\approx159,5\left(cm\right);s_2^2\approx148;s_2\approx12,17\)
b) Nhóm T có \(\overline{x_3}=163\left(cm\right);s_3^2=169;s_3=13\)
Học sinh ở nhóm nam và nhóm T có chiều cao như nhau và cùng lớn hơn chiều cao của học sinh ở nhóm nữ (vì \(\overline{x}_1=\overline{x}_3>\overline{x}_2\)
Vì \(\overline{x}_1=\overline{x}_3=163\left(cm\right)\) và \(s_1< s_3\) nên chiều cao của các học sinh nam đồng đều hơn chiều cao của các học sinh nhóm T
+ Các giá trị khác nhau: x 1 = 3 , x 2 = 4 , x 3 = 5 , x 4 = 6 , x 5 = 7 , x 6 = 8 , x 7 = 9 , x 8 = 10 ⇒ A đúng.
+ Giá trị x7 = 9 xuất hiện 6 lần ⇒ Tân số là 6 ⇒ B đúng.
+ Giá trị x8= 10 xuất hiện 4 lần ⇒ Tần suất là 4 10 hay 10 % ⇒ C đúng ⇒ D sai.
Đáp án D.
Từ biểu đồ trên: Tổng số học sinh giỏi (Toán và Văn; Văn và Anh; Anh và Toán) - 3 lần số hs giỏi cả 3 môn ( Toán; Văn; Anh) = Số học sinh chỉ giỏi 2 trong 3 môn
=> Số học sinh giỏi cả 3 môn là: (8 + 5 + 7 - 11) : 3 = 3 học sinh
Từ đo, ta tìm được số hs chỉ giỏi 2 trong 3 môn ( xem hình)
b) Số học sinh chỉ giỏi Toán là: 15 - (4 + 3+ 5) = 3 HS
Số hs chỉ giỏi Văn là : 14 - (5 + 3 + 2)= 4 HS
Số hs chỉ giỏi tiếng Anh là: 12 - ( 4 + 3 + 2) = 3 HS
Cho mình cái biểu thức tổng số học sinh giỏi (Toán và Văn; Văn và Anh; Anh và Toán) - 3 lần số hs giỏi 2 môn = số hs chỉ giỏi 2 trong 3 môn với ạ
50%=1/2
Phân số tương ứng với 12 bài là:
1-1/2-2/5=1/10(số bài)
Số bài của trường đó là:
12:1/10=120(bài)
Vậy trường đó có 120 bài kiểm tra tương đương với 120 HS
ĐS:120 học sinh
Đổi: \(50\%=\frac{1}{2}\)
Phân số ứng với 12 bài loại trung bình là:
\(1-\left(\frac{1}{2}+\frac{2}{5}\right)=\frac{1}{10}\)
Số học sinh khối 6 của trường đó là:
\(12:\frac{1}{10}=120\) (học sinh)
Đáp số:\(120\) học sinh
a) Tính chiều cao trung bình của học sinh nam
Cách 1 : Sử dụng bảng phân bố tần số ghép lớp :
\(\overline{x}=\dfrac{1}{60}\left(5.140+9.150+19.160+17.170+10.180\right)\)
\(\overline{x}=163\)
Cách 2 : Sử dụng bảng phân bố tần suất ghép lớp :
\(\overline{x}=\dfrac{1}{100}\left(8,33.140+15.150+31,67.160+28,33.170+16,67.180\right)\)\(\overline{x}=163\)
Tính chiều cao trung bình của học sinh nữ:
Cách 1 : Sử dụng bảng phân bố tần số ghép lớp \(\overline{x}=\dfrac{1}{60}\left(8.140+15.150+16.160+14.170+7.180\right)\)
\(\overline{x}=159,5\)
Cách 2 : Sử dụng bảng phân bố tần suất ghép lớp :
\(\overline{x}=\dfrac{1}{100}\left(13,33.140+25.150+26,67.160+23,33.170+11,67.180\right)\)
\(\overline{x}=159,5\)
b) Vì \(\overline{x}_{nam}=163>\overline{x}_{nữ}=159,5\) nên suy ra học sinh ở nhóm nam cao hơn học sinh ở nhóm nữ
c) \(\overline{x}=\left(60.159,5+60.163\right)\dfrac{1}{2}\approx161\left(cm\right)\)
a) Ta lập bảng tần số:
Điểm | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Tần số | 5 | 13 | 5 | 5 | 5 | 5 | 2 |
Từ đó ta thấy mốt của mẫu số liệu trên là: \({M_o} = 5\)
b) Tỉ lệ số học sinh lớp 10A đạt điểm từ 8 trở lên là: \(\frac{{5 + 5 + 2}}{{40}} = 0,3 = 30\% \)
Tỉ lệ này cho thấy số học sinh đạt điểm giỏi của lớp 10A là \(30\% \)
Nhóm T có x 3 ≈ 163(cm); s 3 2 ≈ 169 ; s 3 ≈ 13
Học sinh ở nhóm nam và nhóm T có chiều cao như nhau và cùng lớn hơn chiều cao của học sinh ở nhóm nữ (vì x 1 = x 3 > x 2 )
Vì x 1 = x 3 = 163(cm) và s 1 < s 2 nên chiều cao của các học sinh nam đồng đều hơn chiều cao của các học sinh nhóm T.
Chọn D.
Nhóm thứ 5 là: [158;160)
Giá trị đại diện của nhóm thứ 5 là: