\(x^2+2y^2-2xy+4y+4=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

\(x^2-2xy+y^2+y^2+4y+4=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y+2\right)^2=0\)

\(\left\{{}\begin{matrix}x=y\\y=-2\end{matrix}\right.\)

Vậy : x+y=-4

13 tháng 7 2017

\(x^2+2y^2-2xy+4y+4=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y+2=0\end{cases}}\Leftrightarrow x=y=-2\)

Vậy \(x+y=-2-2=-4\)

12 tháng 8 2017

Ta có:

\(x^2+x^2y^2-2y=0\)

\(\Leftrightarrow x^2=\frac{2y}{y^2+1}\le1\)(cái này chứng minh đơn giản b tự làm lấy nhé)

\(\Leftrightarrow-1\le x\le1\left(1\right)\)

Ta lại có:

\(x^3+2y^2-4y+3=0\)

\(\Leftrightarrow x^3=-1-2\left(y-1\right)^2\le-1\left(2\right)\)

Từ (1) và (2) \(\Rightarrow x=-1\)

\(\Rightarrow y=1\)

\(\Rightarrow x^2+y^2=1+1=2\)

1 tháng 5 2020

kdfjeuy;r;