K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 6 2019

ĐKXĐ: \(6-5^x>0\Rightarrow5^x< 6\)

\(log_5\left(6-5^x\right)=1-x\Leftrightarrow6-5^x=5^{1-x}\)

\(\Leftrightarrow5^x-6+\frac{5}{5^x}=0\Leftrightarrow\left(5^x\right)^2-6.5^x+5=0\)

\(\Rightarrow\left[{}\begin{matrix}5^x=1\\5^x=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\) \(\Rightarrow\sum x=0+1=1\)

AH
Akai Haruma
Giáo viên
19 tháng 4 2020

Lời giải:

$\log(8.5^x+20^x)=x+\log 25$

$\Rightarrow 8.5^x+20^x=10^{x+\log 25}=10^x.25$

$\Rightarrow \frac{8.5^x+20^x}{10^x}=25$

$\Leftrightarrow \frac{8}{2^x}+2^x=25$

Đặt $2^x=t$ thì $\frac{8}{t}+t=25$

$\Leftrightarrow t^2-25t+8=0$

Dễ thấy PT trên luôn có 2 nghiệm dương $t_1,t_2$ nên kéo theo PT ban đầu có 2 nghiệm $x_1,x_2$

Tổng các nghiệm $x_1+x_2=\log_2(t_1)+\log_2(t_2)=\log_2(t_1t_2)=\log_2(8)=3$

1 tháng 6 2018

14 tháng 4 2019

2 tháng 3 2019

NV
4 tháng 10 2021

ĐKXĐ: \(x>-1\)

Bước quan trọng nhất là tách hàm

\(\Leftrightarrow log_2\sqrt{x+3}-2\sqrt{x+3}+\left(x+3\right)=log_2\left(x+1\right)-2\left(x+1\right)+\left(x+1\right)^2\)

Đến đây coi như xong \(\Rightarrow\sqrt{x+3}=x+1\Rightarrow x=1\)

27 tháng 2 2017

Ta xét các trường hợp sau:

+ TH1. x- 3= 1 hay x= 4. Khi đó; phương trình đã cho trở thành : 112= 1 luôn đúng.

=> x= 4 là nghiệm của phương trình.

+ TH2. .

Vậy phương trình đã cho có ba nghiệm 

Chọn C.

20 tháng 9 2017

7 tháng 2 2022

ĐÁP ÁN :

A.2 

7 tháng 3 2019