K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2019

Gọi số vé là abcde( có gạch trên đầu ). Ta có abcde = 45xaxbxcxdxe abcde chia hết cho 5 => e = 0 hoặc 5, nhưng e=0 không thỏa mãn -> e=5 Vậy abcd5= 225xaxbxcxd chia hết cho 25 => d5 chia hết cho 25 Nhận thấy các số a,b,c,d đều phải là số lẻ, mà d5 chia hết cho 25 => d=7. Xét abc75 chia hết cho 9 ( vì 45 chia hết cho 9) => (a+b+c+7+5) = a+b+c+12 chia hết cho 9 và 12 <12+ a+b+c nhỏ hơn hoặc bằng 9+9+9+12 = 39 nên a+b+c+12 = 18; 27 hoặc 36 => a+b+c = 6; 15 hoặc 24 Mà a+b+c lẻ ( do a, b, c là các số lẻ ) => a+b+c = 15 15 phân tích thành tổng 3 chữ số lẻ chỉ có thể là 9+5+1 = 7+7+1 = 7+5+3 Thử 3 trường hơp này thì có 7, 7, 1 thỏa mãn Từ đó tìm ra số 77175 thỏa mãn đề bài

21 tháng 1 2018

Gọi số vé là abcde( có gạch trên đầu ).
Ta có abcde = 45xaxbxcxdxe
abcde chia hết cho 5 => e = 0 hoặc 5, nhưng e=0 không thỏa mãn -> e=5
Vậy abcd5= 225xaxbxcxd chia hết cho 25 => d5 chia hết cho 25
Nhận thấy các số a,b,c,d đều phải là số lẻ, mà d5 chia hết cho 25 => d=7.
Xét abc75 chia hết cho 9 ( vì 45 chia hết cho 9)
=> (a+b+c+7+5) = a+b+c+12 chia hết cho 9 và 12 <12+ a+b+c nhỏ hơn hoặc bằng 9+9+9+12 = 39 nên a+b+c+12 = 18; 27 hoặc 36 => a+b+c = 6; 15 hoặc 24
Mà a+b+c lẻ ( do a, b, c là các số lẻ ) => a+b+c = 15
15 phân tích thành tổng 3 chữ số lẻ chỉ có thể là 9+5+1 = 7+7+1 = 7+5+3
Thử 3 trường hơp này thì có 7, 7, 1 thỏa mãn
Từ đó tìm ra số 77175 thỏa mãn đề bài

17 tháng 3 2017

77175

đúng 100%

Gọi số vé bán được là: abcde (a, b, c,d, e là các chữ số và a khác 0). Theo đề bài ta có:
abcde = 45*a*b*c*d*e
abcde = 5*9*a*b*c*d*e
abcde chia hết cho 5 nên e = 0 hoăc e = 5. Dễ thấy e = 5. Số abcd5 là số lẻ nên a, b,c, d, e đầu là các chữ số lẻ.
abcd5 = 5*9*a*b*c*d*5
abcd5 = 25*9*a*b*c*d
Do đó, abcd5 chia hết cho 25. Mà abcd5 = abc*100 + d5. d5 chia hết cho 25 và d lẻ => d = 7.
Ta có abcde = abc75 chia hết cho 9 nên a + b + c + 7 + 5 = a + b + c + 12 chia hết cho 9. Mà 2 < a + b + c < 28.
Do đó: a + b + c = 6; 15 hoặc 24
Vì a, b, c lẻ nên a + b + c lẻ = > a + b + c = 15
Mà 15 = 1 + 5 + 9 = 1 + 7 + 7 = 3 + 3 + 9 = 3 + 5 + 7 = 5 + 5 + 5
Vì ta có 45*a*b*c*7*5 < 100000
nên a*b*c < 64.  Do đó ta chỉ còn xét hai trường hợp, ba chữ số a, b, c có tổng là 1 + 5 + 9 và 1 + 7 + 7.
Thử chọn thấy 77175 là thích hợp.
Đ/S: 77175.

7 tháng 9 2023

Gọi số vé bán được là \(\overline{abcde}\), theo đề bài

\(\overline{abcde}=45xaxbxcxdxe\Rightarrow a;b;c;d;e\ne0\) 

\(45xaxbxcxdxe⋮5\Rightarrow\overline{abcde}⋮5\Rightarrow e=5\)

\(\Rightarrow\overline{abcde}=\overline{abcd5}=9x5xaxbxcxdx5=9x25xaxbxcxd\)

Do \(\overline{abcde}=\overline{abcd5}\) là một số lẻ \(\Rightarrow9x25xaxbxcxd\) lẻ 

=> a; b; c; d lẻ

\(9x25xaxbxcxd⋮25\Rightarrow\overline{abcd5}⋮25\Rightarrow\overline{d5}=25\) hoặc \(\overline{d5}=75\)

=> d=2 hoặc d=7, nhưng do d lẻ => d=7

\(\Rightarrow\overline{abcde}=\overline{abc75}=9x25xaxbxcx7\)

\(9x25xaxbxcx7⋮9\Rightarrow\overline{abc75}⋮9\Rightarrow a+b+c+d+5=a+b+c+12⋮9\)

\(\Rightarrow a+b+c=6\) hoặc \(a+b+c=15\) hoặc \(a+b+c=24\)

Do a; b; c lẻ => a+b+c lẻ => a+b+c=15

\(9x25xaxbxcx7⋮7\Rightarrow\overline{abc75}⋮7\)

\(\overline{abc75}=100x\overline{abc}+75=98x\overline{abc}+77+2x\overline{abc}-2⋮7\)

\(98x\overline{abc}+77⋮7\Rightarrow2x\overline{abc}-2=2x\left(\overline{abc}-1\right)⋮7\Rightarrow\overline{abc}-1⋮7\)

\(\overline{abc}-1=100xa+10xb+c-1=98xa+7xb+2xa+3xb+c-1⋮7\)

\(98xa+7xb⋮7\Rightarrow2xa+3xb+c-1⋮7\)

\(2xa+3xb+c-1=2x\left(a+b+c\right)+b-c-1=2x15+b-c-1⋮7\)

\(\Rightarrow30+b-c-1=28+b-c+1⋮7\)

\(28⋮7\Rightarrow b-c+1⋮7\)

+ Nếu \(b>c\)  \(\Rightarrow b-c=6\)

Do b;c lẻ => b=9; c=3 hoặc b=7; c=1

Với b=9; c=3 => a+b+c=a+9+3=15=> a=3

\(\Rightarrow\overline{abcde}=39375\)

Thử 45x3x9x3x7x5=127575 (loại)

Với b=7; c=1 => a+b+c=a+7+1=15=> a=7

\(\Rightarrow\overline{abcde}=77175\)

Thử 45x7x7x1x7x5=77175 (chọn)

+ Nếu \(b< c\Rightarrow b-c+1=-\left(c-b-1\right)⋮7\Rightarrow c-b-1⋮7\)

Do b,c lẻ => c-b chẵn => c-b=8 => c=9; b=1

=> a+b+c=a+1+9=15=> a=5

\(\Rightarrow\overline{abcde}=51975\)

Thử 45x5x1x9x7x5=70875 (loại)

Vậy \(\overline{abcde}=77175\)

 

7 tháng 4 2017

77175 vé 

k nha

23 tháng 8 2017

77175 la dung ban nha

24 tháng 8 2017

Muốn viết tất cả các số tự nhiên từ 100 đến 999 phải dùng hết bao nhiên chữ số 5?
giải
ta có 100 chia hết cho 5 
và số lớn nhất chia hết cho 5 trong dãy số này là:
995
vì cứ mỗi số chia hết cho 5 thì cách 5 đơn vị thì lại là một số chia hết cho 5
nên
từ 100-995 có số chữ số 5 là:
(995-100):5+1=180(số)
đáp số:180 số
đúng thì thanks mình nhé!

14 tháng 7 2018


Gọi N là số cần tìm. Ta có các nhận xét sau:

(1) N không chứa chữ số 0.

(2) N chia hết cho 5 nên có tận cùng là 5 (do (1)).

(3) N không chứa chữ số chẵn vì nếu không thì tích các chữ số của nó sẽ chia hết cho 10 và dẫn đến N tận cùng là 0.

(4) Do N chia hết cho 45 và chia hết cho số 5 trong chữ số tận cùng của nó nên N chia hết cho 9 và chia hết cho 25, suy ra tổng các chữ số của N chia hết cho 9 và N có tận cùng là 75 (không thể là 25 hoặc 50).

(5) Tích các số của N phải nằm trong khoảng từ 10000 đến 99999 .


(6) Gọi a,b,c là 3 chữ số đầu tiên của N thì a,b,c chỉ có thể là 1,3,5,7,9 và ta có abc x 7 hoặc x 5 nằm giữa 222 và 2222 hay 7 < abc < 63

(7) Tổng các chữ số của N là a+b+c+12 chỉ có thể nhận các giá trị là 18, 27, 36. Tuy nhiên, loại 18 vì khi đó a+b+c=6, không có tổng của 3 số lẻ nào là một số chẵn. Tương tự với 36.

(8) Do đó, tổng các chữ số của N chỉ có thể là 27 và a+b+c=15
Ta có các biểu diễn sau: 15=1+7+7=1+5+9=3+3+9=3+5+7, tuy nhiên do bị chặn bởi điều kiện (6) nên chỉ có thể là 2 trường hợp đầu tiên.

(9) Nếu a,b,c=1,7,7 thì tích là 49 và số là 77175, thỏa mãn. Nếu a,b,c=1,5,9 thì tích là 45 và số tương ứng là 70876, loại. 

(10) Vậy số cần tìm là 77175.  

28 tháng 2 2017

Ta có : abcde= 45* a*b*c*d*e => e = 5 ( e # 0) => abcd5 = 5*(5*9)* a*b*c*d*e abcd5 = 25*9*a*b*c*d => abcd5 chia hết cho 25 Mặt khác : abcd5 = abc*100 + d5 = abc*4*25 + d5 chia hết cho 25 mà abc*4*25 chia hết cho 25 => d5 chia hết cho 25 => d = 7 (d # 2 vì d = 2 thì abcd5 lẻ mà 25*9*a*b*c*d chẵn=> vô lí) Thay d = 7, ta có : abc*4*25 + 75 = 25*9*a*b*c*7 => abc*4 + 3 = 9*a*b*c*7 => abc*4 + 3 = 9*7*a*b*c Vì abc*4 + 3 là số lẻ nên a, b, c đều lẻ Mà 9*7*a*b*c chia hết cho 63 => abc*4 chia 63 dư 60 => mà 60 : 4 = 15 => abc = 63k+15, đồng thời lẻ Ta có: 4(63k+15) + 3 = 63*4k+63 = 63*a*b*c => 4k+1 = a*b*c và: 111 < hoặc = 63k+15 < hoặc = 999 => 2 < hoặc =k < hoặc = 15, Mà a, b, c lẻ nên ta chọn được k = 12 => abc = 63*12+15 = 771 => SCT : 77175