
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1:
Xét ΔABC có
M là trung điểm của BC
ME//AC
Do đó: E là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MF//AB
DO đó: F là trung điểm của AC
Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: EF là đường trung bình
=>EF//BC
hay BEFC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BEFC là hình thang cân

Bài 1: Giải: Xét tam giác ACD có F,G lần lượt là trung điểm AC,DC nên FG là đường trung bình
\(\Rightarrow\)\(FG//AD\)
C/m tương tự đc \(EH//AD; GH//EF//BC\)
\(\Rightarrow EFGH\) là hình bình hành
a/Để EFGH là hình chữ nhật thì góc \(FGH=90^o\)
\(\Rightarrow góc HGD+góc FGC=90^o\)
Mà góc HGD=góc BCD;góc FGC= góc ADC ( góc đồng vị = nhau)
\(\Rightarrow\) góc BCD+góc ADC=\(90^o\)
\(\Rightarrow\)Để EFGH là hình chữ nhật thì tứ giác ABCD cần có góc BCD+góc ADC=\(90^o\)
b/Để EFGH là hình thoi thì FG=HG
Mà FG=1/2AD; HG=1/2BC
\(\Rightarrow\)AD=BC
\(\Rightarrow\)Để EFGH là hình thoi thì tứ giác ABCD có AD=BC
c/ để EFGH là hình vuông thì EFGH phải vừa là hình chữ nhật vừa là hình thoi\(\Rightarrow \)ABCD phải có đủ cả 2 điều kiện trên

Xét tứ giác ABCD có cạnh đối diện AD và BC cắt nhau tại O
Gọi D1 và C1 lần lượt là các điểm đối xứng của C và D qua O
Khi đó:\(\hept{\begin{cases}AC_1=AC\\BD_1=BD\\C_1D_1=CD\end{cases}}\)
Áp dụng định lí ta có:
Tứ giác \(ABC_1D_1:AD_1\perp BC_1\)
\(\Leftrightarrow AB^2+C_1D_1^2=AC_1^2+BD_1^2\)
\(\Rightarrow AD\perp BC\)
\(\Leftrightarrow AB^2+CD^2=AC^2+BD^2\)
Cre:h

a) Các góc của hình thang đều bằng \(90^{\circ}\).
b) Khi \(B C = 6\), chu vi hình thang bằng 24 cm.
a: ABCD là hình thang cân
=>\(\hat{ADC}=\hat{BCD}\)
mà \(\hat{ADC}=2\cdot\hat{BDC}\) (DB là phân giác của góc ADC)
nên \(\hat{BCD}=2\cdot\hat{BDC}\)
Xét ΔBDC vuông tại B có \(\hat{BDC}+\hat{BCD}=90^0\)
=>\(2\cdot\hat{BDC}+\hat{BDC}=90^0\)
=>\(3\cdot\hat{BDC}=90^0\)
=>\(\hat{BDC}=\frac{90^0}{3}=30^0\)
\(\hat{ADC}=2\cdot\hat{BDC}=2\cdot30^0=60^0\)
ABCD là hình thang cân
=>\(\hat{ADC}=\hat{BCD}\)
=>\(\hat{BCD}=60^0\)
AB//CD
=>\(\hat{BAD}+\hat{ADC}=180^0\)
=>\(\hat{BAD}=180^0-60^0=120^0\)
ABCD là hình thang cân
=>\(\hat{BAD}=\hat{ABC}\)
=>\(\hat{ABC}=120^0\)
b: Ta có: AB//CD
=>\(\hat{ABD}=\hat{BDC}\) (hai góc so le trong)
mà \(\hat{ADB}=\hat{BDC}\)
nên \(\hat{ABD}=\hat{ADB}\)
=>AB=AD
mà AD=BC(ABCD là hình thang cân)
nên AB=AD=BC=6(cm)
Xét ΔBCD vuông tại B có \(\sin CDB=\frac{CB}{CD}\)
=>\(\frac{6}{CD}=\sin30=\frac12\)
=>\(CD=2\cdot6=12\left(\operatorname{cm}\right)\)
Chu vi hình thang ABCD là:
AB+BC+CD+DA
=6+6+6+12=18+12=30(cm)

A B C D O K a)Xét tứ giác OBKC, ta có:
OC//BK(BK//AC)
BO//KC(KC//BD)
=>tứ giác OBKC là hình bình hành
lại có:
AC \(\perp\) BD ( hai đường chéo)
BD//KC
=> \(\)góc OCK =90o
=> hình bình hành OBKC là hình chữ nhật
b)Ta có:
BC = OK ( do OCKD là hình chữ nhật)
AB=BC( cách cạnh hình thoi bằng nhau)
=> AB = OK
c)
* nếu tứ giác ABCD là hình vuông:
=>BD=AC
mà: BO=1/2BD
OC=1/2AC
=> BO = OC
=> hình chữ nhật OBKC là hình vuông.
Vậy HCN OBKC là hình vuông khi hình thoi ABCD là hình vuông

Phần I
Câu 1: c,d
Câu 2: e
Phần II
Câu 1:
a, 2008a2-2008b2=2008(a2-b2)=2008(a-b)(a+b)
b, x2-8x+15=x2-3x-5x-+15=x(x-3)-5(x-3)=(x-5)(x-3)
Câu 2:
a, M= (x-3)(x+3)-(x+2)2-2(x2-4,5)
M= x2-9-(x2+4x+4)-2x2+9
M= x2-9-x2-4x-4-2x2+9
M= -2x2-4x-4
M= -2(x2+2x+2)b, Để M=0 -> -2(x2+2x+2)=0->x2+2x+2=0
Phần 1:
Câu 1: D
Câu 2: E
Phần 2:
Câu 1:
\(A=2008a^2-2008b^2\)
\(=2008\left(a^2-b^2\right)\)
\(=2008\left(a-b\right)\left(a+b\right)\)
\(B=x^2-8x+15\)
\(=x^2-3x-5x+15\)
\(=x\left(x-3\right)-5\left(x-3\right)\)
\(=\left(x-3\right)\left(x-5\right)\)
Câu 2:
\(M=\left(x-3\right)\left(x+3\right)-\left(x+2\right)^2-2\left(x^2-4,5\right)\)
\(=x^2-9-x^2-4x-4-2x^2+9\)
\(=-2x^2-4x-4\)
\(=-2\left(x^2+2x+2\right)\)
\(=-2\left[\left(x^2+2x+1\right)+1\right]\)
\(=-2\left[\left(x+1\right)^2+1\right]\)
\(=-2-2\left(x+1\right)^2\le-2< 0\)
Vậy không có giá trị nào của x thoả mãn yêu cầu.
Số các đường chéo của đa giác lồi 6 cạnh bằng
n ( n − 3 ) 2 = 6 ( 6 − 3 ) 2 = 9
Đáp án cần chọn là: A