K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2016

Ta có: 4 đồng dư với 1(mod 3)

=>4^4 đồng dư với 1^4(mod 3)

=>4^4 đồng dư với 1(mod 3) (1)

          44 đồng dư với 2(mod 3)

=>44^2 đồng dư với 2^2(mod 3)

=>44^2 đồng dư với 4(mod 3)

=>44^2 đồng dư với 1(mod 3)

=>(44^2)^22 đồng dư với 1^22(mod 3)

=>44^44 đồng dư với 1(mod 3) (2)

          444 đồng dư với 0(mod 3)

=>444^444 đồng dư với 0^444(mod 3)

=>444^444 đồng dư với 0(mod 3) (3)

          2007 đồng dư với 0(mod 3) (4)

Từ (1), (2), (3) và (4)

=>4^4+44^44+444^444+2007 đồng dư với 1+1+0+0(mod 3)

=>4^4+44^44+444^444+2007 đồng dư với 2(mod 3)

=>4^4+44^44+444^444+2007 chia 3 dư 2

Vì số chính phương chia 3 dư 0 hoặc 1

=>4^4+44^44+444^444+2007 không phải là số chính phương

Uk, bài này làm đồng dư lâu lắm..

AH
Akai Haruma
Giáo viên
9 tháng 7

Lời giải:

$4^4+44^{44}+444^{444}+4444^{4444}$ chia hết cho $4$ (do bản thân mỗi số hạng đều chia hết cho $4$

$15$ chia $4$ dư $3$

$\Rightarrow n$ chia $4$ dư $3$.

Ta biết rằng 1 số chính phương khi chia 4 chỉ có thể có dư là $0$ hoặc $1$.

$\Rightarrow n$ không phải scp.

17 tháng 12 2017

a,n=1 thì tm

n=2 thì ko tm

n=3 thì tm

n=4 thì ko tm

n >= 5 thì n! chia hết cho 2 và 5 => n! có tận cùng là 0

Mà 1!+2!+3!+4! = 33

=> 1!+2!+3!+4!+.....+n! có tận cùng là 3 nên ko chính phương

Vậy n thuộc {1;3}

k mk nha

2 tháng 4 2021

help me

13 tháng 8 2018

10!+52= 3628852, k phải là số chính phương vì số chính phương k bao giờ có tận cùng là 2

9 tháng 2 2019

\(S=1+2+2^2+...+2^{2015}\)

\(\Rightarrow2S=2+2^2+...+2^{2016}\)

\(\Rightarrow2S-S=S=2^{2016}-1\)

\(S+18=2^{2016}+18-1=2^{2016}+17\)

Tự làm , đề sai rroi

26 tháng 10 2021
a,là số chính phương
26 tháng 10 2021
b,không phải là số chính phương
12 tháng 12 2015

hỏi gớm hè