Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt có nghiệm phức là \(z=1-2i\) nên \(z=1+2i\) cũng là 1 nghiệm
Theo Viet:
\(\left\{{}\begin{matrix}1-2i+1+2i=-a\\\left(1-2i\right)\left(1+2i\right)=c\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-2\\c=5\end{matrix}\right.\) \(\Rightarrow a+c=3\)
Chọn D.
Do đó phương trình có 2 nghiệm thực và 4 nghiệm phức. Vậy nhận xét 4, 6 đúng.
1) Chọn B
\(\left(z+i\right)^2+3\left(z^2+3zi+2i^2\right)+2\left(z^2+4zi+4i^2\right)=0\\ \Leftrightarrow\left(z+i\right)^2+3\left(z+i\right)\left(z+2i\right)+2\left(z+2i\right)^2=0\\ \Leftrightarrow\left(2z+3i\right)\left(3z+5i\right)=0\)
\(\Rightarrow\left\{\begin{matrix}z_1=-3i:2\\z_2=-5i:3\end{matrix}\right.\)
Vậy \(2z_1+3z_2=2\left(\frac{-3i}{2}\right)+3\left(\frac{-5i}{3}\right)=-8i\)
2) Chọn D
\(\Delta=\left(4-i\right)^2-4\left(5+i\right)=-5-12i\)
Ta có: \(\Delta=\left(2-3i\right)^2\Rightarrow\sqrt{\Delta}=\pm\left(2-3i\right)\)
Nghiệm của pt là:
\(z=\frac{4-i\pm\sqrt{\Delta}}{2}=\frac{4-i\pm\left(2-3i\right)}{2} \)
\(\Rightarrow\left[\begin{matrix}z=3-2i\\z=1+i\end{matrix}\right.\)
Vì \(\left|z_1\right|< \left|z_2\right|\Rightarrow\left\{\begin{matrix}z_1=1+i\\z_2=3-2i\end{matrix}\right.\)
Vậy \(\left|z_1-2z_2\right|=\left|i+1-6+4i\right|=5\sqrt{2}\)
Chọn C.
Gọi z = a + bi là nghiệm của phương trình.
Ta có: 4(a + bi) 2 + 8(a2 + b2) - 3 = 0
4(a2 – b2 + 2abi) + 8( a2 + b2) - 3 = 0
12a2 + 4b2 +8abi - 3 = 0
Vậy phương trình có 4 nghiệm phức.
a) (3 + 2i)z – (4 + 7i) = 2 – 5i
⇔(3+2i)z=6+2i
<=> z = \(\dfrac{\text{6 + 2 i}}{\text{3 + 2 i}}\) = \(\dfrac{22}{13}\) - \(\dfrac{6}{13}\)i
b) (7 – 3i)z + (2 + 3i) = (5 – 4i)z
⇔(7−3i−5+4i)=−2−3i
⇔z= \(\dfrac{\text{− 2 − 3 i}}{\text{2 + i}}\) = \(\dfrac{-7}{5}\) - \(\dfrac{4}{5}i\)
c) z2 – 2z + 13 = 0
⇔ (z – 1)2 = -12 ⇔ z = 1 ± 2 √3 i
d) z4 – z2 – 6 = 0
⇔ (z2 – 3)(z2 + 2) = 0
⇔ z ∈ { √3, - √3, √2i, - √2i}
Đáp án B.
Đặt suy ra tập hợp các điểm M(z) = (x;y) là đường tròn (C) có tâm I(3;4) và bán kính R = 5
Ta có
Ta cần tìm P sao cho đường thẳng ∆ và đường tròn (C) có điểm chung
Do đó