Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số hs lớp 9a có là a (hs)( a >o . a\(\in\)N)
số hsg hk1 lớp 9a có là 1/8 x (hs)
số hsg kì 2 lớp 9a có là
1/8x + 3 = 20 % x
1/8x + 3 = 1/5x
\(\frac{5x+120}{40}\)= \(\frac{8x}{40}\)
5x + 120 = 8x
3x =120
x =40 (tm)
đ/s...................
ko bt đúng ko nữa
#mã mã#
Gọi số học sinh giỏi của lớp 9A và số học sinh của lớp 9A lần lượt là x(bạn), y(bạn)
(Điều kiện: \(x,y\in Z^+\))
Cuối học kì 1, số học sinh giỏi của lớp 9A bằng 20% số học sinh cả lớp nên ta có: \(x=20\%y=0,2y\)(1)
Sang học kì 2, lớp có thêm 2 bạn đạt học sinh giỏi nên số học sinh giỏi kì 2 bằng số học sinh cả lớp nên ta có:
x+2=y(2)
Từ (1),(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}x=0,2y\\x+2=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0,2y+2=y\\x=0,2y\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-0,8y=-2\\x=0,2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2,5\\x=0,2\cdot2,5=0,5\end{matrix}\right.\)(loại)
=>Đề sai rồi bạn
Gọi số học sinh lớp 9a là: x ( x,y\(\in\)N* ) ( học sinh )
9b là: y
\(\Rightarrow x+y=76\)(1)
Số học sinh giỏi lớp 9a là: \(\frac{1}{6}x\)hs
9b là: \(\frac{1}{5}y\)hs
\(\Rightarrow\frac{1}{6}x+\frac{1}{5}y=14\)(2)
Từ (1) và (2) ta có hệ phương trình:
\(\hept{\begin{cases}x+y=76\\\frac{1}{6}x+\frac{1}{5}y=14\end{cases}\Leftrightarrow\hept{\begin{cases}x=36\\y=40\end{cases}}}\)
Vậy...
Gọi số học sinh lớp 9A là x(bạn)
(Điều kiện: \(x\in Z^+\))
Số học sinh giỏi cuối kì 1 là: 0,2x(bạn)
Số học sinh giỏi cuối kì 2 là: 0,2x+2(bạn)
Theo đề, ta có: \(0,2x+2=0,25x\)
=>-0,05x=-2
=>x=2:0,05=2:1/20=40(nhận)
Vậy: Lớp 9A có 40 bạn
Gọi số hs lớp 9A là x => số hsg của lớp 9A là \(\frac{x.60}{100}\)
Gọi số hs lớp 9B là y => số hsg của lớp 9b là \(\frac{y.75}{100}\)
=> Ta có pt (1) \(\frac{60x}{100}+\frac{75y}{100}=51\Leftrightarrow12x+15y=1020\)
Ta có hệ PT
\(\hept{\begin{cases}x+y=76\\12x+15y=1020\end{cases}}\)
Giải hệ PT trên
Gọi a(bạn) và b(bạn) lần lượt là số học sinh giỏi và số học sinh khá của lớp(Điều kiện: a∈N*; b∈N*)
Vì lớp học chỉ có các bạn học sinh xếp loại học lực giỏi và khá nên số học sinh của lớp là: a+b(bạn)
Vì khi một bạn học sinh giỏi chuyển đi thì 1/6 số học sinh còn lại của lớp là học sinh giỏi nên ta có phương trình:
\(a-1=\dfrac{1}{6}\cdot\left(a+b-1\right)\)
\(\Leftrightarrow a-1=\dfrac{1}{6}a+\dfrac{1}{6}b-\dfrac{1}{6}\)
\(\Leftrightarrow a-1-\dfrac{1}{6}a-\dfrac{1}{6}b+\dfrac{1}{6}=0\)
\(\Leftrightarrow\dfrac{5}{6}a-\dfrac{1}{6}b=\dfrac{5}{6}\)
\(\Leftrightarrow6\left(\dfrac{5}{6}a-\dfrac{1}{6}b\right)=6\cdot\dfrac{5}{6}\)
\(\Leftrightarrow5a-b=5\)(1)
Vì khi chuyển 1 bạn học sinh khá đi thì 4/5 số học sinh còn lại của lớp là học sinh khá nên ta có phương trình:
\(\left(b-1\right)=\dfrac{4}{5}\cdot\left(a+b-1\right)\)
\(\Leftrightarrow b-1=\dfrac{4}{5}a+\dfrac{4}{5}b-\dfrac{4}{5}\)
\(\Leftrightarrow b-1-\dfrac{4}{5}a-\dfrac{4}{5}b+\dfrac{4}{5}=0\)
\(\Leftrightarrow-\dfrac{4}{5}a+\dfrac{1}{5}b=\dfrac{1}{5}\)
\(\Leftrightarrow5\left(-\dfrac{4}{5}a+\dfrac{1}{5}b\right)=\dfrac{1}{5}\cdot5\)
\(\Leftrightarrow-4a+b=1\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}5a-b=5\\-4a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=6\\5a=5+b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=6\\b+5=30\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=6\left(nhận\right)\\b=25\left(nhận\right)\end{matrix}\right.\)
Vậy: Số học sinh của lớp là: 6+25=31(bạn)
Gọi số hsg , hs khá lần lượt là : x,y ( x , y € N* )
ta có pt :
x-1= (x+y-1)/6
y-1=4(x+y-1)/5
giải pt ta đc :
X=6
Y=25
Vậy số học sinh cả lớp là : 31 học sinh
🙂🙂🙂
Có thêm 4 học sinh thì tăng từ 40% lên 48%
\(\Rightarrow\) 4 học sinh tương đương với 8% số học sinh cả lớp
\(\Rightarrow\) Số học sinh cả lớp là: \(\dfrac{4}{8\%}=50\) (học sinh)
Đề hình như sai hoặc em lag
+Nếu số học sinh ở học kì 1 là 50 thì khi sang học kì 2 sẽ là 54, đồng nghĩa với việc 48% số học sinh giỏi ở học kì 2 sẽ là 25,92 học sinh.
+Nếu số học sinh ở kì 2 là 50 thì ở học kì 1 sẽ là 46, cũng có nghĩa là 40% số học sinh ở kì 1 sẽ là 18,4 học sinh
@@