K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

[ Tổng hợp kiến thức Toán Học dành cho HỌC SINH THCS (Part 2) ] 

|-----------------------------------------------------------------------------|

loading...

#Lưu ý: Khi đọc các mục dưới đây chỉ có thể giúp các bạn cải thiện kiến thức môn Toán của mình và không bị "Mất gốc" trong môn Toán ở cấp độ THCS

(1) Phần số học 

+ Số nguyên tố, phân tích một số ra thừa số nguyên tố 

- Ở cấp THCS ta cần nắm và hiểu rõ về số nguyên tố 

Số nguyên tố là số tự nhiên khác 1 và chia hết cho 1 và chia hết cho chính nó 

VD: \(3,5,7,11,13,17,19,23,29,...\) 

- Cách phân tích 1 số ra thừa số nguyên tố 

Bước 1: Nhìn sơ quát số và nhẩm xem số đó chia hết cho 2,3,5 hay 7 không 

Bước 2: Xét thương nếu thương không phải số nguyên tố thì tiếp tục phân tích 

Bước 3: Tiếp tục phân tích thương dần đến kết quả cuối cùng là 1 số nguyên tố 

VD: Phân tích số 35 

Ta có: 35 = 7 x 5 

+ Ước, bội, ước chung lớn nhất, bội chung nhỏ nhất

- Tập hợp các số mà số đó chia hết được gọi là ước 

Được kí hiệu là Ư(x) 

- Tập hợp các số chia hết cho số đó được gọi là bội 

Được kí hiệu là B(x) 

VD: Ư(10)\(=\left\{1;2;5;10\right\}\) 

       \(B\left(10\right)=\left\{0;10;20;30;40;50;...\right\}\) 

- Ước chung là tập hợp ước của số này mà cũng là ước của số kia 

Được kí hiệu là: ƯC(x;y) 

- Bội chung là tập hợp bội của số này mà cũng là bội của số kia 

Được kí hiệu là BC(x;y) 

VD: \(Ư\left(12\right)=\left\{1;2;3;4;6;12\right\}\)

       \(Ư\left(15\right)=\left\{1;3;5;15\right\}\)

\(\RightarrowƯC\left(12;15\right)=\left\{1;3\right\}\)

       \(B\left(9\right)=\left\{0;9;18;27;36;54;...\right\}\)

       \(B\left(3\right)=\left\{0;3;6;9;12;15;18;21;24;27;...\right\}\)

\(\Rightarrow BC\left(9;3\right)=\left\{0;9;18;27;..\right\}\)

- Ước chung lớn nhất là ước của số này cũng là ước của số kia nhưng đó là ước chung lớn nhất 

Được kí hiệu là: ƯCLN

- Bội nhung nhỏ nhất là bội của số này cũng là bội của số kia nhưng đó là bội chung nhỏ nhất 

Được kí hiệu là: BCNN 

+ Số hữu tỉ, vô tỉ, số thập phân hữu hạn, vô hạng tuần hoàn, giá trị tuyệt đối

- Số hữu tỉ được biểu diễn dưới dạng \(\dfrac{a}{b}\left(a,b\in Z;b\ne0\right)\) 

Tập hợp các số hữu tỉ được kí hiệu là tập hợp Q 

- Số thập phân hữu hạn là số hữu tỉ tối giản không có ước nguyên tố khác 2 và 5 

VD: \(\dfrac{1}{5};\dfrac{2}{5};\dfrac{5}{2};...\)

- Số thập phân vô hạn tuần hoàn là số hữu tỉ có ước nguyên tố khác 2,5 

VD: \(\dfrac{3}{7};\dfrac{1}{6};\dfrac{1}{9};\dfrac{5}{7};...\)

- Cách công trừ nhân chia các số hữu tỉ:

Cộng số hữu tỉ:

\(\dfrac{a}{m}+\dfrac{b}{m}=\dfrac{a+b}{m}\)

Trừ số hữu tỉ:

\(\dfrac{a}{m}-\dfrac{b}{m}=\dfrac{a-b}{m}\)

Nhân số hữu tỉ:

\(\dfrac{a}{n}\cdot\dfrac{b}{m}=\dfrac{a\cdot b}{m\cdot n}\)

Chia số hũu tỉ:

\(\dfrac{a}{n}:\dfrac{b}{m}=\dfrac{a}{n}\cdot\dfrac{m}{b}=\dfrac{a\cdot m}{n\cdot b}\)

- Tính giá trị tuyệt đối của 1 số hữu tỉ: 

\(\left\{{}\begin{matrix}khi:x\ge0\Rightarrow\left|x\right|=x\\khi:x< 0\Rightarrow\left|x\right|=-x\end{matrix}\right.\)

VD: \(\left|-5\right|=-\left(-5\right)=5\left(-5< 0\right)\) 

       \(\left|2\right|=2\left(2>0\right)\)

(2) Phần hình học 

+ Một đường thẳng cắt 2 đường thẳng song song, hai góc so le trong, đồng vị, trong cùng phía

Lúc này ta có: \(A//C\) và \(F\) cắt \(A,C\)

Khi 1 đường thẳng cắt 2 đường thẳng song song sẽ tạp ra các cặp góc: so le trong, đồng vị, trong cùng phía 

Khai niệm:

Hai góc đồng vị là 2 góc có cùng vị trí trong hai đường thẳng song song bị cắt bởi 1 đường thẳng 

- Hai góc đồng vị có cùng số đo với nhau 

VD: hai góc đồng vị trong hình: 

\(\left(\widehat{A_1};\widehat{B_1}\right);\left(\widehat{A_2};\widehat{B_2}\right);\left(\widehat{A_3};\widehat{B_3}\right);\left(\widehat{A_4};\widehat{B_4}\right)\)

Hai góc so le trong là so le với nhau trong hai đường thẳng song song bị cắt bởi 1 đường thẳng 

- Hai góc so le trong có cùng số đo với nhau  

VD: hai góc so le trong ở trong hình: \(\left(\widehat{A_3};\widehat{B_2}\right);\left(\widehat{A_4};\widehat{B_1}\right)\)

Hai góc trong cùng phía là hai góc này bên trong 2 đường thẳng và cùng 1 phía trong hai đường thẳng song song bị cắt bởi 1 đường thẳng  

- Hai góc trong cùng phía có tổng số đo là 180o  

VD: hai góc trong cùng phía trong hình là: 

\(\left(\widehat{A_3};\widehat{B_1}\right);\left(\widehat{A};\widehat{B_2}\right)\)

+ Diện tích hình chữ nhật hình vuông, hình tam giác, hình thang; hình bình hành; hình thoi,....

Với: 

\(a\): cạnh đáy (chiều dài) 

\(b\) :cạnh đáy lớn (chiều rộng) 

\(h\): là chiều cao 

\(d\): là đường chéo 

- Diện tích hình chữ nhật:

\(S=a\times b\)

- Diện tích hình vuông:

\(S=a\times a=a^2\)

- Diện tích hình tam giác:

\(S=\dfrac{1}{2}\times a\times h\)

- Diện tích hình thang:

\(S=\dfrac{a+b}{2}\times h\)

- Diện tích hình bình hành:

\(S=a\times h\)

- Diện tích hình thôi:

\(S=\dfrac{d_1\times d_2}{2}\)  

+ Diện tích xung quanh, diện tích toàn phần, thể tích hình hộp chữ nhật, hình lập phương 

Với:

\(a\): cạnh (chiều rộng) 

\(b\): chiều dài 

\(h\): chiều cao 

- Diện tích xung quanh của hình hộp chữ nhật:
\(S_{xq}=\left(a+b\right)\times2\times h\)

- Diện tích toàn phần của hình hộp chữ nhật:

\(S_{tp}=S_{xq}+S_đ\times2=\left(a+b\right)\times2\times h+a\times b\times2\)

- Thể tích hình hộp chữ nhật:

\(V=a\times b\times h\)

- Diện tích xung quanh hình lập phương: 

\(S_{xq}=\left(a+a\right)\times2\times a=4a^2\)

- Diện tích toàn phần của hình lập phương là: 

\(S_{tp}=S_{xq}+S_đ\times2=4a^2+2a^2=6a^2\)

- Thể tích hình lập phương là:

\(V=a\times a\times a=a^3\)

__________________________________________

*Cách học môn toán không bị nhàm chán và thú vi cần biết các tips sau: *  

- Không được học liên tiếp 2 - 3 giờ sẽ khiến cho cơ thể mệt mỏi buồn ngủ không hiệu quả

- Để không bị mất gốc thì nên học toàn chú trọng vào các ý chính (VD: ghi nhớ, các điều mà thầy cô lưu ý học) 

- Không cần thuộc lòng quan trọng là biết vận dụng vào bài toán 

- Cần lưu ý các kiến thức toán cở cấp độ của mình (tiểu học, THCS, THPT) 

- Phối hợp việc học toán và việc giải trí tránh bị nhàm chán mất tinh thần

- ....

Các bạn hay anh chị có các tips học toán thú vị hơn mong anh chị bình luận ở đây nhé (trân trọng) 

(* Nếu trong part 1 này có gì thiếu sót thì mong các anh chị và các bạn góp ý với mình nhé mình sẽ cải thiện điều đó trong các part tới ạ *)     

12
6 tháng 9 2023

Xịn quá à=)

6 tháng 9 2023

Uii, toàn mấy phần iemm đang cần luôn nè  :>>

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 62/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 83/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 94/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 95/CM n^5-5n^3+4n chia hết cho 120 vơi...
Đọc tiếp

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6

2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8

3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9

4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9

5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n

6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n

7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n

8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49

9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương

10/CMR với mọi số tự nhiên n>1:

a/ số n^4 +4 là hợp số

b/ số n^4+4k^4 là hợp số (k là số tự nhiên)

11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5

12/ Số 2^32+1 có là số nguyên tố không?

13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)

14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n

15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia

                               

6
14 tháng 7 2016

nhìn là hết muốn làm

14 tháng 7 2016

sao dài dòng quá vậy, như thế thì ai mà làm nổi, bạn phải hỏi từng bài 1 chứ

Nhìn là muốn chạy rùi

^-^

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 62/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 83/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 94/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 95/CM n^5-5n^3+4n chia hết cho 120 vơi...
Đọc tiếp

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6

2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8

3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9

4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9

5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n

6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n

7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n

8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49

9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương

10/CMR với mọi số tự nhiên n>1:

a/ số n^4 +4 là hợp số

b/ số n^4+4k^4 là hợp số (k là số tự nhiên)

11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5

12/ Số 2^32+1 có là số nguyên tố không?

13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)

14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n

15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia

                               

7
11 tháng 8 2015

đăng giết người à           

11 tháng 8 2015

Nhìn là hết muốn làm.

Số chính phương là một số bằng bình phương của một số tự nhiênFTính chất  a) Số chính phương chỉ có thể tận cùng là : 0; 1; 4; 5; 6; 9 không thể tận cùng bởi   2; 3; 7; 8.b)     Một số chính phương có chữ số tận cùng là 5 thì chữ số hàng chục là 2,c)      Một số chính  phương có chữ số hàng đơn vị là 6 thì chữ số hàng chục của nólà số lẻ.d)   Khi phân tích ra thừa số nguyên tố, số...
Đọc tiếp

Số chính phương là một số bằng bình phương của một số tự nhiên

FTính chất

  a) Số chính phương chỉ có thể tận cùng là : 0; 1; 4; 5; 6; 9 không thể tận cùng bởi   

2; 3; 7; 8.

b)     Một số chính phương có chữ số tận cùng là 5 thì chữ số hàng chục là 2,

c)      Một số chính  phương có chữ số hàng đơn vị là 6 thì chữ số hàng chục của nó

là số lẻ.

d)   Khi phân tích ra thừa số nguyên tố, số chính phương chỉ chứa các thừa số

nguyên tố với số mũ chẵn ,không chứa thừa số nguyên tố với số mũ lẻ .

 

FTừ tính chất này suy ra

 

-Số chính phương chia hết cho 2 thì chia hết cho 4.

-Số chính phương chia hết cho 3 thì chia hết cho 9.

-Số chính phương chia hết cho 5 thì chia hết cho 25. 

-Số chính phương chia hết cho 8 thì chia hết cho 16.

0
2 tháng 4 2018

  zdvdz

[ Tổng hợp kiến thức Toán Học dành cho HỌC SINH THCS (Part 3) ] |-----------------------------------------------------------------------------|#Lưu ý: Khi đọc các mục dưới đây chỉ có thể giúp các bạn cải thiện kiến thức môn Toán của mình và không bị "Mất gốc" trong môn Toán ở cấp độ THCS (1) Phần số học: + Các tính chất cơ bản giao hoán, kết hợp - Tính chất giao hoán được biểu hiện trong phép cộng và...
Đọc tiếp

[ Tổng hợp kiến thức Toán Học dành cho HỌC SINH THCS (Part 3) ] 

|-----------------------------------------------------------------------------|

loading...

#Lưu ý: Khi đọc các mục dưới đây chỉ có thể giúp các bạn cải thiện kiến thức môn Toán của mình và không bị "Mất gốc" trong môn Toán ở cấp độ THCS 

(1) Phần số học: 

+ Các tính chất cơ bản giao hoán, kết hợp 

- Tính chất giao hoán được biểu hiện trong phép cộng và nhân 

CT: \(a+b+c=a+c+b\) 

       \(a\cdot b\cdot c=a\cdot c\cdot b\) 

Tính chất này khá quen ở cấp tiểu học và rất quan trọng ở cấp THCS 

- Tính chất kết hợp được biểu hiện ở trong phép cộng và nhân 

CT: \(a+b+c=\left(a+c\right)+b\)

      \(a\cdot b\cdot c=\left(a\cdot c\right)\cdot b\)

Tương tự giao hoán tính chất này rất quan trong để làm các dạng bài tập như:

VD: \(3,12+6+0,88=\left(3,12+0,88\right)+6=4+6=10\) 

+ Dấu hiệu chia hết cho các số từ 1 - 10 

- Tất cả các số chia hết cho 1 

- Chia hết cho 2:      

Các số chia hết cho 2 có các chữ số cuối cùng là 0, 2, 4, 6, 8 

VD: 12, 56, 96, ... 

- Chia hết cho 3: 

Dấu hiệu của một số chia hết cho 3 là tổng các chữ số đó sẽ chia hết cho 3:

CT: \(\overline{abcd}\) chia hết cho 3 khi \(a+b+c+d\) chia hết cho 3

VD: \(3210\) chia hết cho 3 vì \(3+2+1+0=6\) ⋮ 3 

- Chia hết cho 4:

Dấu hiệu của 1 số chia hết cho 4 khi 2 chữ số cuối cùng của số đó chia hết cho 4 đều này bắt buộc các bạn phải nhớ được các số chia hết cho 4 từ 0 - 99 

CT: \(\overline{abcd}\) chia hết cho 4 khi \(\overline{cd}\) chia hết cho 4 

VD: \(3456\) chia hết cho 4 khi 56 chia hết cho 4  

- Chia hết cho 5:

Dấu hiệu chia hết cho 5 là các số có chữ số cuối cùng là 5 hoặc 0

- Chia hết cho 6: 

Dấu hiệu của một số chia hết cho 6 là số đó vừa chia hết cho 2 vừa chia hết cho 3 

VD: 1230 chia hết cho 6 vì 1230 vừa chia hết cho 2 vừa chia hết cho  3

- Chia hết cho 7: 

Dấu hiệu của 1 số chia hết cho 7 là lấy 5 nhân cho chữ số tận cùng rồi cộng cho phần còn lại của số đó nếu chia hết cho 7 thì số đó chia hết cho 7 

CT: \(\overline{abcd}\)chia hết cho 7 khi \(5\cdot d+\overline{abc}\) ⋮ 7

VD: 182 chia hết cho 7 vì \(5\cdot2+18=28\) ⋮ 7 

- Chia hết cho 8 

Dấu hiệu 1 số chia hết cho 8 khi 3 chữ số cuối của số đó chia hết cho 8

VD: 1264 chia hết cho 8 khi 3 chữ số cuối của nó chia hết cho 8 

- Chia hết cho 9

Dấu hiệu của 1 số chia hết cho 9 khi tổng các chữ số của số đó tạo thành 1 số chia hết cho 4

CT: \(\overline{abcd}\) chia hết cho 8 khi \(a+b+c+d\) ⋮ 9

VD: 36 chia hết cho 9 vì 3 + 6 chia hết cho 9 

- Chia hết cho 10 

Dấu hiệu chia hết cho 10 là chữ số tận cùng của số đó là số 0 

VD: 120 chia hết cho 10 vì có chữ số tận cùng là số 0 

+ Quy tắc dấu của các phép cộng trừ nhân chia các số nguyên 

- Phép cộng: 

\(a+b=a+b\)

\(\left(-a\right)+\left(-b\right)=-\left(a+b\right)\)

\(a+\left(-b\right)=a-b\)

\(-a+b=b-a\)

- Phép trừ:

\(a-b=a-b\)

\(-a-b=-\left(a+b\right)\)

\(a-\left(-b\right)=a+b\)

- Phép nhân:

\(a\cdot b=a\cdot b\)

\(-a\cdot-b=a\cdot b\)

\(a\cdot-b=-\left(a\cdot b\right)\)

\(-a\cdot b=-\left(a\cdot b\right)\)

- Phép chia:

\(a:b=a:b\)

\(-a:-b=a:b\)

\(-a:b=-\left(a:b\right)\)

\(a:-b=-\left(a:b\right)\)

Lưu ý: Khi mở/ đóng ngoặc nếu trước dấu ngoặc đó là dấu + thì dữ nguyên nếu trước dấu ngoặc đó là dấu - thì đổi dấu tất cả hạng tử của phép tính đó:

VD: \(-\left(a-b-c\right)=-a+b+c\)

+ Tính chất dãy tỉ số bằng nhau 

Ta có tính chất này:

Nếu: \(\dfrac{a}{m}=\dfrac{b}{n}\) (với m,n là số nguyên ≠ biến) và biết \(a\pm b=?\) thì ta có thể tìm được a,b như sau:

VD: \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{a+b}{2+3}=\dfrac{5}{5}=1\) (biết \(a+b=5\)

\(\Rightarrow\left\{{}\begin{matrix}a=2\cdot1=2\\b=3\cdot1=3\end{matrix}\right.\)

Công thức tổng quát: \(\dfrac{a_1}{m_1}=\dfrac{a_2}{m_2}=\dfrac{a_3}{m_3}=...=\dfrac{a_n}{m_n}=\dfrac{a_1+a_2+...+a_n}{m_1+m_2+...+m_n}\)

(2) Phần hình học 

+ Các trường hợp bằng nhau của tam giác 

- Trường hợp 1:

Nếu 3 cạnh của tam giác này bằng 3 cạnh của tam giác kia thì 2 tam giác này bằng nhau

Xét ΔABC và ΔDEF ta có:

\(AB=DE\left(gt\right)\)

\(AC=DF\left(gt\right)\)

\(BC=EF\left(gt\right)\)

\(\Rightarrow\text{Δ}ABC=\text{Δ}DEF\left(c.c.c\right)\) 

- Trường hợp 2: 

Nếu 2 cạnh của tam giác này bằng 2 cạnh của tam giác kia và 1 góc nằm giữa 2 cạnh này của tam giác này bằng góc nằm giữa 2 cạnh này của tam giác kia thì hai tam giác bằng nhau 

Xét ΔABC và ΔDEF ta có: 

\(AB=DE\left(gt\right)\) 

\(AC=DF\left(gt\right)\)

\(\widehat{A}=\widehat{D}\left(gt\right)\)

\(\Rightarrow\text{Δ}ABC=\text{Δ}DEF\left(c.g.c\right)\)

- Trường hợp 3: 

Nếu 1 cạnh của tam giác này bằng 1 cạnh của tam giác kia và 2 góc kề cạnh này của tam giác này bằng 2 góc kề cạnh này của tam giác kia thì hai tam giác bằng nhau

Xét ΔABC và ΔDEF ta có:

\(\widehat{A}=\widehat{D}\left(gt\right)\)

\(AB=DE\left(gt\right)\)

\(\widehat{B}=\widehat{E}\left(gt\right)\)

\(\Rightarrow\text{Δ}ABC=\text{Δ}DEF\left(g.c.g\right)\)

+ Định lý Py-ta-go thuận và đảo

- Theo định lý Py-ta-go thì trong 1 tam giác vuông thì tổng bình phương của hai cạnh góc vuông bằng bình phương của cạnh huyền (nhận biết cạnh huyền: cạnh đối diện với góc vuông thì cạnh đó là cạnh huyền

Theo ĐL Py-ta-go trong tam giác vuông: \(a^2+b^2=c^2\) (1) (a,b là cạnh góc vuông, c là cạnh huyền) 

Từ công thức thên ta có thể tính được toàn bộ các cạnh của tam giác vuông khi biết 2 cạnh còn lại 

Từ (1) \(\Rightarrow\left\{{}\begin{matrix}c=\sqrt{a^2+b^2}\\a=\sqrt{c^2-b^2}\\b=\sqrt{c^2-a^2}\end{matrix}\right.\) 

- Định lý Py-ta-go đảo được dựa trên định lý Py-ta-go thuận nên nếu trong 1 tam giác bình phương của cạnh này bằng tổng bình phương của 2 cạnh còn lại thì tam giác đó là tam giác vuông (góc đối diện với cạnh bằng tổng bình phương hai cạnh kia chính là góc vuông) 

Theo định lý Py-ta-go đảo: \(c^2=a^2+b^2\Rightarrow\text{Δ}\) đó vuông     

VD: Cho tam giác ABC vuông tại A và AB=3(cm), AC=4(cm). Tính BC

Xét ΔABC vuông tại A áp dụng định lý Py-ta-go ta có:

\(BC^2=AC^2+AB^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}\)

\(\Rightarrow BC=\sqrt{3^2+4^2}=\sqrt{25}=5\left(cm\right)\) 

+ Bộ 3 độ dài cạnh của tam giác

Để xác định được bộ 3 độ dài cạnh của tam giác thì ta có nhận xét sau: 

\(\left\{{}\begin{matrix}a+b>c\\a+c>b\\b+c>a\end{matrix}\right.\Rightarrow a,b,c\) là bộ 3 độ dài cạnh của tam giác 

VD: cho tam giác ABC có: AB = 1(cm), AC=1,5(cm), BC=5(cm) 

Ta có:

\(\left\{{}\begin{matrix}AB+AC< BC\left(1+1,5< 5\right)\\BC+AB>AC\left(1+5>15\right)\\BC+AC>AB\left(5+1,5>1\right)\end{matrix}\right.\)

Vậy bộ 3 độ dài của của tam giác ABC là không đúng 

________________________________________

*Cách học môn toán không bị nhàm chán và thú vi cần biết các tips sau: *  

- Không được học liên tiếp 2 - 3 giờ sẽ khiến cho cơ thể mệt mỏi buồn ngủ không hiệu quả

- Để không bị mất gốc thì nên học toàn chú trọng vào các ý chính (VD: ghi nhớ, các điều mà thầy cô lưu ý học) 

- Không cần thuộc lòng quan trọng là biết vận dụng vào bài toán 

- Cần lưu ý các kiến thức toán cở cấp độ của mình (tiểu học, THCS, THPT) 

- Phối hợp việc học toán và việc giải trí tránh bị nhàm chán mất tinh thần

- Sử dụng sơ đồ tư duy, takennotes, ...

- Lại đi làm lại nhiều lần dạng bài còn yếu

- Ôn lại nhiều lần các kiến thức, khái niệm, công thức... 

- Sử dụng nhiều kĩ thuật nhớ lâu, nhanh 

Các bạn hay anh chị có các tips học toán thú vị hơn mong anh chị bình luận ở đây nhé (trân trọng) 

(* Nếu trong part 3 này có gì thiếu sót thì mong các anh chị và các bạn góp ý với mình nhé mình sẽ cải thiện điều đó trong các part tới ạ *)  

 

7
17 tháng 9 2023

Cảm ơn bạn nhá !

17 tháng 9 2023

Cảm ơn bạn nhé !

22 tháng 9 2020

Cách 1: 

Số trong 5 số có dạng 2x.3y trong đó x,y là số tự nhiên khác 0.

(x;y) chỉ có thể (C;C); (L;L); (C;L); (L;C) vì có 5 số 4 dạng nên tồn tại 2 số cùng một dạng nên tích 2 số này là số chính phương.

Cách 2:

Ta dễ dàng chứng minh được trong 3 số tự nhiên bất kỳ luôn tìm được 2 số bất kỳ mà tổng của chúng chia hết cho 2.

Vì số trong 5 số có dạng 2x.3y trong đó x,y là số tự nhiên khác 0 nên ta luôn chọn được 2 số mà tích của nó là số chính phương.

Mn giúp mik bt Tin Học với ạ..! Mn lm đc bài nào thì làm nha ...!Câu 1 (7,0 điểm): Số chính phương.Cho trước số nguyên dương N (0< N≤ 106 ). Yêu cầu: Tìm số nguyên dương K nhỏ nhất sao cho tích của K và N là một số chính phương. Dữ liệu vào: File CP.INP chứa số N. Dữ liệu ra: File CP.OUT ghi số nguyên K tìm được.Câu 2 (6,0 điểm): Dòng lớn nhất.Cho một tệp tin gồm nhiều dòng. Trên mỗi dòng chứa...
Đọc tiếp

Mn giúp mik bt Tin Học với ạ..! Mn lm đc bài nào thì làm nha ...!

Câu 1 (7,0 điểm): Số chính phương.

Cho trước số nguyên dương N (0< N≤ 106 ). Yêu cầu: Tìm số nguyên dương K nhỏ nhất sao cho tích của K và N là một số chính phương. Dữ liệu vào: File CP.INP chứa số N. Dữ liệu ra: File CP.OUT ghi số nguyên K tìm được.

Câu 2 (6,0 điểm): Dòng lớn nhất.

Cho một tệp tin gồm nhiều dòng. Trên mỗi dòng chứa một xâu kí tự chỉ gồm các kí tự chữ cái và chữ số, độ dài của mỗi xâu không quá 255 kí tự.

Yêu cầu: Đưa ra dòng có nhiều kí tự chữ cái nhất, nếu có nhiều dòng thỏa mãn thì đưa ra dòng đầu tiên có nhiều kí tự chữ cái nhất. Dữ liệu vào: File DLN.INP gồm:

+ Dòng đầu ghi số N là số lượng dòng chứa các xâu kí tự.

+ N dòng tiếp theo: mỗi dòng ghi một xâu kí tự. Dữ liệu ra: File DLN.OUT ghi ra dòng có nhiều kí tự chữ cái nhất, nếu có nhiều dòng thỏa mãn thì đưa ra dòng đầu tiên có nhiều kí tự chữ cái nhất.

Câu 3 (4,0 điểm): Dãy con đối xứng.

Một dãy số liên tiếp gọi là dãy đối xứng nếu đọc các số theo thứ tự từ trái sang phải cũng giống như khi đọc theo thứ tự từ phải sang trái. Cho dãy số A gồm N số nguyên dương: a1, a2,..., aN (1≤ N≤ 10000; 1≤ ai≤ 32000; 1≤ i≤ N)

Yêu cầu: Hãy tìm dãy con đối xứng dài nhất của dãy A. Nếu có nhiều dãy con thoả mãn thì lấy dãy con xuất hiện đầu tiên trong dãy A. Dữ liệu vào: File DX.INP gồm 2 dòng:

- Dòng 1: ghi số nguyên dương N.

- Dòng 2: ghi N số nguyên dương lần lượt là giá trị của các số trong dãy A, các số được ghi cách nhau ít nhất một dấu cách.

Dữ liệu ra: File DX.OUT ghi dãy tìm được trên cùng một dòng, các số được ghi cách nhau một dấu cách.

Câu 4 (3,0 điểm): Dãy nguyên tố.

Cho một dãy số B gồm n số nguyên dương (n ≤ 1000), mỗi phần tử trong dãy có giá trị không quá 30000. Yêu cầu:

+ Tìm dãy con dài nhất (liên tiếp hoặc không liên tiếp) các phần tử là những số nguyên tố có giá trị tăng dần của dãy B và thứ tự của các phần tử không đổi so với ban đầu. Ví dụ: Dãy 8 phần tử {4, 2, 5, 6, 3, 3, 7, 9} có dãy con nguyên tố tăng dài nhất là {2, 5, 7}.

+ Nếu có nhiều dãy con thoả mãn thì lấy dãy con xuất hiện đầu tiên trong dãy B. Dữ liệu vào: File NT.INP gồm 2 dòng:

- Dòng 1: Ghi số nguyên dương n.

- Dòng 2: Ghi n số nguyên dương, các số được ghi cách nhau một dấu cách. Dữ liệu ra: File NT.OUT ghi dãy con tìm được trên cùng 1 dòng, giữa 2 phần tử liền kề trong dãy có một dấu cách.

0
26 tháng 12 2016

\(2016=2^5\cdot3^2\cdot7\)

Vậy tổng các thừa số nguyên tố là 12

26 tháng 12 2016

\(2016=2^5.3^2.7\)