K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

hình như = 0 bạn à 

khai triển = tam giác pascal còn khai triên = nhị thức niu tơn mk chịu

11 tháng 3 2017

0

12 tháng 3 2017

cách giải thế nào vậy ?

28 tháng 9 2020

Đề có thiếu không vậy ? 

28 tháng 9 2020

À ờ bài này vẫn làm được :)

A = x2 + 3y2 + 2xy + 4y + 5

= ( x2 + 2xy + y2 ) + ( 2y2 + 4y + 2 ) + 3

= ( x + y )2 + 2( y2 + 2y + 1 ) + 3

= ( x + y )2 + 2( y + 1 )2 + 3 ≥ 3 ∀ x

Dấu "=" xảy ra <=> x = 1 ; y = -1

=> MinA = 3 <=> x = 1 ; y = -1

24 tháng 9 2016

2) \(A=\frac{x^3-27}{x-3}+5x\)

      \(=\frac{\left(x-3\right).\left(x^2+3x+9\right)}{x-3}+5x\)

       \(=x^2+3x+9+5x=x^2+8x+9\)

        \(=\left(x+\text{4}\right)^2-7\ge-7\)

Vậy \(A_{min}=-7\)

4) Số đỉnh của đa giác có tổng các góc trong bằng \(1080^o\)là 8

P/s cn mấy cái kia kh bk =))

        

24 tháng 9 2016

số cặp bằng = 0 nha

10 tháng 7 2019

1,

\(\left(\frac{2}{3}x+y\right)^2=\left(\frac{2}{3}x\right)^2+2.\frac{2}{3}x.y+\left(y\right)^2=\frac{4}{9}x^2+\frac{4}{3}xy+y^2\)

\(\left(3a+\frac{1}{2}b\right)^2=\left(3a\right)^2+2.3a.\frac{1}{2}b+\left(\frac{1}{2}b\right)^2=9a^2+3ab+\frac{1}{4}b^2\)

2,

\(25a^2+4b^2+20ab=\left(5a\right)^2+\left(2b\right)^2+2.5a.2b=\left(5a+2b\right)^2\)

\(x^2+2x+1=\left(x\right)^2+2.x.1+\left(1\right)^2=\left(x+1\right)^2\)

\(9x^2+6x+1=\left(3x\right)^2+2.3x.1+\left(1\right)^2=\left(3x+1\right)^2\)

\(\left(2x+3y\right)^2+2.\left(2x+3y\right)+1=\left(2x+3y+1\right)^2\)

27 tháng 6 2016

hehe

28 tháng 6 2016

Sao bạn hông trả lời giúp mình

13 tháng 7 2019

Phần a? phải là \(4a^2-4a+1\)chứ 

a) \(4a^2-4a+1=\left(2a\right)^2+2.2a+1\)

                                 \(=\left(2a+1\right)^2\)

b) \(9x^2-25y^2=\left(3x\right)^2-\left(5y\right)^2\)

                            \(=\left(3x-5y\right)\left(3x+5y\right)\)

c) \(1-2x+a^2=\left(1-a\right)^2\)

d) \(\left(2x+1\right)-2.\left(2x+1\right)\left(3x-y\right)+\left(3x-y\right)^2\)

\(=\left[\left(2x+1\right)-\left(3x-y\right)\right]^2\)

13 tháng 7 2019

nếu có sai thì bn thông cảm

1.

b) nó là hằng đẳng thức rồi bn nhá

c) \(1-2a+a^2\)\(1^2-2a1+a^2\)=\(\left(1-a\right)^2\)

d)\(\left[\left(2x+1\right)-\left(3x-y\right)\right]^2\)=\(\left(2x+1-3x+y\right)^2\)=\(\left(1-x+y\right)^2\)

2.

a)\(\left(\frac{1}{2}x\right)^2-\left(3y\right)^2\)=\(\left(\frac{x}{2}-3y\right)\left(\frac{x}{2}+3y\right)\)

b) Ko khai triển đc

c) \(4x^2+2xy+\frac{1}{4}y^2\)

25 tháng 1 2021

mong các bạn giúp mình, cảm ơn rất nhiều

11 tháng 7 2016

1/ \(3x^2+6x+3-3y^2=3x^2+3x+3x+3-3y^2\)

\(=3\left(x^2+2x+1-y^2\right)\)

\(=3\left[\left(x^2+2x+1\right)-y^2\right]\)

\(=3\left[\left(x+1\right)^2-y^2\right]\)

\(=3\left(x+1-y\right)\left(x+1+y\right)\)

2/ \(25-x^2-y^2+2xy=5^2-\left(x^2+y^2-2xy\right)\)

\(=5^2-\left(x-y\right)^2\)

\(=\left[5-\left(x-y\right)\right]\left(5+x+y\right)\)

\(=\left(5-x+y\right)\left(5+x+y\right)\)

3/ \(3x-3y-x^2+2xy-y^2=3\left(x-y\right)-\left(x^2-2xy+y^2\right)\)

\(=3\left(x-y\right)-\left(x-y\right)^2\)

\(=\left(x-y\right)\left[3-\left(x-y\right)\right]\)

\(=\left(x-y\right)\left(3-x+y\right)\)

9 tháng 4 2020

Ta có : Q = x2 - 2xy -12x +y2 +12y + 36 + 5y2 -10y + 5 + 1976

               = [ x2 -2x(y + 6 ) + ( y + 6 )2 ] + 5 (y2 -2y +1 ) +1976

                = ( x- y - 6 )2 + 5 (y-1)2 + 1976

Vì ( x - y - 6)2 \(\ge\)0 với mọi x ; y ;5 .(y-1)2 \(\ge\)0 với mọi x ; y và 1976 > 0 

Nên biểu thức Q luôn nhận giá trị dương với mọi x ;y

9 tháng 4 2020

Q=x2+6y2−2xy−12x+2y+2017

Q=(x2-2xy+y2)-(12x-12y)+36+(5y2-10y+5)+1976

=(x-y)2-12(x-y)+36+5(y2-2y+1)+1976

=[(x-y)2-12(x-y)+36]+5(y-1)2+1976

=(x-y-6)2+5(y-1)2+1976

do (x-y-6)2 ≥ 0 ∀ x,y

(y-1)2 ≥ 0 ∀ y

=> (x-y-6)2+5(y-1)2+1976 ≥ 1976

=> Q≥ 1976

=> MinA=1976 khi

y-1=0

=>y=1

x-y-6=0

=>x-1-6=0

=>x-7=0

=>x=7

Vậy GTNN của Q =1976 khi x=7 và y=1