K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 8

Lời giải:

Đặt $\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k$

$\Rightarrow x=3k; y=4k ; z=5k$.

Khi đó:

$2x^2+2y^2-3z^2=-100$

$\Rightarrow 2(3k)^2+2(4k)^2-3(5k)^2=-100$

$\Rightarrow -25k^2=-100$

$\Rightarrow k^2=4\Rightarrow k=2$ (do $x,y,z$ dương nên $k$ phải dương) 

$\Rightarrow x=3k=12; y=4k=16; z=5k=20$

AH
Akai Haruma
Giáo viên
31 tháng 8

Lời giải:

Đặt $\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k$

$\Rightarrow x=3k; y=4k ; z=5k$.

Khi đó:

$2x^2+2y^2-3z^2=-100$

$\Rightarrow 2(3k)^2+2(4k)^2-3(5k)^2=-100$

$\Rightarrow -25k^2=-100$

$\Rightarrow k^2=4\Rightarrow k=2$ (do $x,y,z$ dương nên $k$ phải dương) 

$\Rightarrow x=3k=12; y=4k=16; z=5k=20$

AH
Akai Haruma
Giáo viên
23 tháng 10 2023

Đoạn:

2x
2 + 2y
2 − 3z
2= -100 là như thế nào bạn nhỉ?

Bạn viết lại đề để mọi người hiểu hơn nhé.

4 tháng 4 2022

\(\dfrac{x}{4}=\dfrac{y}{4}=\dfrac{z}{5}=>\dfrac{2x^2}{32}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}\)

AD t/c của dãy tỉ số bằng nhâu ta có

\(\dfrac{2x^2}{32}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}=\dfrac{2x^2+2y^2-3z^2}{32+32-75}=\dfrac{-100}{-11}=\dfrac{100}{11}\)

\(=>\left[{}\begin{matrix}x=\dfrac{400}{11}\\y=\dfrac{400}{11}\\z=\dfrac{500}{11}\end{matrix}\right.\)

4 tháng 4 2022

lần đầu thấy tự làm nha:))

26 tháng 7 2018

AH
Akai Haruma
Giáo viên
28 tháng 7

Lời giải:

Đặt $\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k(k>0)$

$\Rightarrow x=3k; y=4k; z=5k$.

Khi đó:

$2x^2+2y^2-3z^2=-100$

$\Rightarrow 2(3k)^2+2(4k)^2-3(5k)^2=-100$

$\Rightarrow -25k^2=-100$

$\Rightarrow k^2=4\Rightarrow k=2$ (do $k>0$)

Ta có:

$x=3k=3.2=6; y=4k=4.2=8; z=5k=5.2=10$

a, Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)

Áp dụng tính chất của day tỉ số bằng nhau ta được:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)

\(=>\dfrac{a}{c}=\dfrac{3a+b}{3c+d}=>\dfrac{a}{3a+b}=\dfrac{c}{3c+d}=>\left(đpcm\right)\)

 

19 tháng 8 2021

Bài 1:

Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)

\(\dfrac{a}{c}=\dfrac{3a+b}{3c+d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)

Vậy từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)(ĐPCM)