K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{2}{3}a=\dfrac{3}{5}b=\dfrac{6}{7}c\)

=>\(\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{5}{3}}=\dfrac{c}{\dfrac{7}{6}}\)

mà a+b+c=1950

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{5}{3}}=\dfrac{c}{\dfrac{7}{6}}=\dfrac{a+b+c}{\dfrac{3}{2}+\dfrac{5}{3}+\dfrac{7}{6}}=\dfrac{1950}{\dfrac{13}{3}}=450\)

=>\(\left\{{}\begin{matrix}a=450\cdot\dfrac{3}{2}=675\\b=450\cdot\dfrac{5}{3}=750\\c=450\cdot\dfrac{7}{6}=525\end{matrix}\right.\)

23 tháng 3

bn làm cách khác có đc ko bn, chứ mik ko hiểu do mik chx học tính chất của dãy tỉ số bằng nhau á. mà thank bn nha

24 tháng 4 2023

\(\dfrac{a}{3}=\dfrac{b}{2};\dfrac{b}{6}=\dfrac{c}{5}\)
\(\Rightarrow\dfrac{a}{9}=\dfrac{b}{6};\dfrac{b}{6}=\dfrac{c}{5}\)

\(\Rightarrow\dfrac{a}{9}=\dfrac{b}{6}=\dfrac{c}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{9}=\dfrac{b}{6}=\dfrac{c}{5}=\dfrac{a+b+c}{9+6+5}=\dfrac{-40}{20}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}a=-2\cdot9=-18\\b=-2\cdot6=-12\\c=-2\cdot5=-10\end{matrix}\right.\)

17 tháng 3 2017

Bài 1:

\(S=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{a+b}+1\right)-3\)

\(=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)

\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)

\(=2007.\dfrac{1}{90}-3\)

\(=19,3\)

Vậy S = 19,3

17 tháng 3 2017

5b)\(S=1+3+3^2+...+3^{2013}\)

\(\Rightarrow3S=3+3^2+3^3+...+3^{2014}\)

\(\Rightarrow3S-S=3^{2014}-1\)

\(\Rightarrow S=\dfrac{3^{2014}-1}{2}\)

11 tháng 2 2022

b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)

Đặt \(x=15k;y=20k;z=24k\)

Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)

ý a) sao đang \(a,b,c\) lại thành \(x,y,z\) ? :DD??

b: Đặt \(\dfrac{a}{5}=\dfrac{b}{7}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=5k\\b=7k\end{matrix}\right.\)

Ta có: ab=140

nên \(35k^2=140\)

\(\Leftrightarrow k^2=4\)

Trường hợp 1: k=2

\(\Leftrightarrow\left\{{}\begin{matrix}a=5k=10\\b=7k=14\end{matrix}\right.\)

Trường hợp 2: k=-2

\(\Leftrightarrow\left\{{}\begin{matrix}a=5k=-10\\b=7k=-14\end{matrix}\right.\)

22 tháng 10 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{a-b-c}{8-12-15}=\dfrac{28}{-19}=\dfrac{-28}{19}\)

Do đó: \(\left\{{}\begin{matrix}a=\dfrac{-224}{19}\\b=\dfrac{-336}{19}\\c=\dfrac{-420}{19}\end{matrix}\right.\)

19 tháng 11 2021

Câu 2:

\(\dfrac{a+b}{6}=\dfrac{b+c}{7}=\dfrac{c+a}{8}=\dfrac{2\left(a+b+c\right)}{6+7+8}=\dfrac{28}{21}=\dfrac{4}{3}\\ \Rightarrow\left\{{}\begin{matrix}a+b=\dfrac{4}{3}\cdot6=8\\b+c=\dfrac{4}{3}\cdot7=\dfrac{28}{3}\\c+a=\dfrac{4}{3}\cdot8=\dfrac{32}{3}\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}a=14-\dfrac{28}{3}=\dfrac{14}{3}\\b=14-\dfrac{32}{3}=\dfrac{10}{3}\\c=14-8=6\end{matrix}\right.\)

Vậy chọn C

16 tháng 9 2021

Ta có: \(\dfrac{a}{3}=\dfrac{b}{4}\)

          \(\dfrac{b}{2}=\dfrac{c}{5}\Rightarrow\dfrac{b}{4}=\dfrac{c}{10}\)

\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{10}=\dfrac{a-c+b}{3-10+4}=\dfrac{3}{-3}=-1\)

\(\Rightarrow\left\{{}\begin{matrix}a=\left(-1\right).3=-3\\b=\left(-1\right).4=-4\\c=\left(-1\right).10=-10\end{matrix}\right.\)

16 tháng 9 2021

hay quá

12 tháng 9 2021

\(\dfrac{b}{2}=\dfrac{c}{5}\Rightarrow\dfrac{b}{4}=\dfrac{c}{10}\)

\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{10}=\dfrac{a-c+b}{3-10+4}=\dfrac{3}{-3}=-1\)

\(\Rightarrow\left\{{}\begin{matrix}a=\left(-1\right).3=-3\\b=\left(-1\right).4=-4\\c=\left(-1\right).10=-10\end{matrix}\right.\)

29 tháng 11 2017

a)

Gọi 3 phần của số A lần lượt là a, b, c.

Theo đề ta có:

\(\dfrac{a}{\dfrac{2}{5}}=\dfrac{b}{\dfrac{3}{4}}=\dfrac{c}{\dfrac{1}{6}}\)\(a^2+b^2+c^2=24309\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{\dfrac{2}{5}}=\dfrac{b}{\dfrac{3}{4}}=\dfrac{c}{\dfrac{1}{6}}=\dfrac{a^2}{\left(\dfrac{2}{5}\right)^2}=\dfrac{b^2}{\left(\dfrac{3}{4}\right)^2}=\dfrac{c^2}{\left(\dfrac{1}{6}\right)^2}=\dfrac{a^2+b^2+c^2}{\dfrac{4}{25}+\dfrac{9}{16}+\dfrac{1}{36}}=\dfrac{24309}{\dfrac{2701}{3600}}=32400\)

\(\dfrac{a}{\dfrac{2}{5}}=32400\Rightarrow a=32400.\dfrac{2}{5}=12960\)

\(\dfrac{b}{\dfrac{3}{4}}=32400\Rightarrow b=32400.\dfrac{3}{4}=24300\)

\(\dfrac{c}{\dfrac{1}{6}}=32400\Rightarrow c=32400.\dfrac{1}{6}=5400\)

Vậy số A được chia thành 3 phần lần lượt là \(12960;24300;5400\)

29 tháng 11 2017

b) Đặt: \(\dfrac{a}{c}=\dfrac{c}{b}=\dfrac{a+c}{b+c}=t\)

Ta có: \(\dfrac{a^2}{c^2}=\dfrac{c^2}{b^2}=\dfrac{a^2+c^2}{b^2+c^2}=t^2\)

\(\dfrac{a}{c}.\dfrac{c}{b}=t.t=\dfrac{a}{b}=t^2\)

Ta có đpcm

21 tháng 2 2023

b) Ta có : \(\dfrac{2a}{3}=\dfrac{3b}{4}=\dfrac{4c}{5}\)

\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{4}{3}}=\dfrac{c}{\dfrac{5}{4}}=\dfrac{a+b+c}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Khi đó \(a=12.\dfrac{3}{2}=18;b=12.\dfrac{4}{3}=16;c=12.\dfrac{5}{4}=15\)

Vậy (a,b,c) = (18,16,15)