\(\sqrt{x^2+3x-10}-2\sqrt{x-2}-3\sqrt{x+5}+6=0\) là:
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 6 2020

ĐKXĐ: \(x\ge2\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x-2}=a\ge0\\\sqrt{x+5}=b>0\end{matrix}\right.\)

\(\Rightarrow ab-2a-3b+6=0\)

\(\Rightarrow a\left(b-2\right)-3\left(b-2\right)=0\)

\(\Leftrightarrow\left(a-3\right)\left(b-2\right)=0\Rightarrow\left[{}\begin{matrix}a=3\\b=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-2=9\\x+5=4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=11\\x=-1\left(l\right)\end{matrix}\right.\)

18 tháng 10 2020

a) \(\sqrt{2x-1}=\sqrt{5}\)

ĐK : \(x\ge\frac{1}{2}\)

Bình phương hai vế

pt <=> \(2x-1=25\)

    <=> \(2x=26\)

    <=> \(x=13\left(tm\right)\)

Vậy S = { 13 }

b) \(\sqrt{4-5x}=12\)

ĐK : \(x\le\frac{4}{5}\)

Bình phương hai vế

pt <=> \(4-5x=144\)

    <=> \(-5x=140\)

    <=> \(x=-28\left(tm\right)\)

Vậy S = { -28 }

c) \(\sqrt{x^2+6x+9}=3x-1\)< chắc hẳn là như này :]> 

<=> \(\sqrt{\left(x+3\right)^2}=3x-1\)

<=> \(\left|x+3\right|=3x-1\)

<=> \(\orbr{\begin{cases}x+3=3x-1\left(x\ge-3\right)\\-3-x=3x-1\left(x< -3\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x=2\left(tm\right)\\x=-\frac{1}{2}\left(ktm\right)\end{cases}}\)

Vậy S = { 2 }

d) \(2\sqrt{x}\le\sqrt{10}\)

ĐK : \(x\ge0\)

Bình phương hai vế

bpt <=> \(4x\le10\)

      <=> \(x\le\frac{10}{4}\)

Kết hợp với ĐK => Nghiệm của bất phương trình là \(0\le x\le\frac{10}{4}\)

18 tháng 10 2020

a) \(ĐKXĐ:x\ge\frac{1}{2}\)

 \(\sqrt{2x-1}=\sqrt{5}\)\(\Leftrightarrow2x-1=5\)

\(\Leftrightarrow2x-1=5\)\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=3\)( thỏa mãn ĐKXĐ )

Vậy nghiệm của phương trình là \(x=3\)

b) \(ĐKXĐ:x\le\frac{4}{5}\)

\(\sqrt{4-5x}=12\)\(\Leftrightarrow4-5x=144\)( bình phương 2 vế )

\(\Leftrightarrow5x=-140\)\(\Leftrightarrow x=-28\)( thỏa mãn ĐKXĐ )

Vậy nghiệm của phương trình là \(x=-28\)

c) \(ĐKXĐ:x\ge\frac{1}{3}\)

\(\sqrt{x^2+6x+9}=3x-1\)

\(\Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\)

\(\Leftrightarrow\left|x+3\right|=3x-1\)

+) TH1: Nếu \(x+3< 0\)\(\Leftrightarrow x< -3\)

thì \(\left|x+3\right|=-\left(x+3\right)=-x-3\)

\(\Rightarrow-x-3=3x-1\)\(\Leftrightarrow4x=-2\)

\(\Leftrightarrow x=\frac{-1}{2}\)(  không thỏa mãn ĐKXĐ )

+) TH2: \(x+3\ge0\)\(\Rightarrow x\ge-3\)

thì \(\left|x+3\right|=x+3\)

\(\Rightarrow x+3=3x-1\)\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\)( thỏa mãn ĐKXĐ )

Vậy nghiệm của phương trình là \(x=2\)

21 tháng 8 2017

Ta có 27^5=3^3^5=3^15
243^3=3^5^3=3^15
Vậy A=B
2^300=2^(3.100)=2^3^100=8^100
3^200=3^(2.100)=3^2^100=9^100
Vậy A<B

3 tháng 1 2020

a) xy2 + 2xy - 243y + x = 0

\(\Leftrightarrow\)x ( y + 1 )2 = 243y

Mà ( y ; y + 1 ) = 1 nên 243 \(⋮\)( y + 1 )2

Mặt khác ( y + 1 ) 2 là số chính phương nên ( y + 1 )2 \(\in\){ 32 ; 92 }

+) ( y + 1 )2 = 32 \(\Rightarrow\orbr{\begin{cases}y+1=3\\y+1=-3\end{cases}\Rightarrow\orbr{\begin{cases}y=2\Rightarrow x=54\\y=-4\Rightarrow x=-108\end{cases}}}\)

+) ( y + 1 )2 = 92 \(\Rightarrow\orbr{\begin{cases}y+1=9\\y+1=-9\end{cases}\Rightarrow\orbr{\begin{cases}y=8\Rightarrow x=24\\y=-10\Rightarrow x=-30\end{cases}}}\)

vậy ...

b) \(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)( đk : x > 0 )

\(\Leftrightarrow\sqrt{x^2+12}-4=3x+\sqrt{x^2+5}-9\)

\(\Leftrightarrow\sqrt{x^2+12}-4=3x-6+\sqrt{x^2+5}-3\)

\(\Leftrightarrow\frac{x^2-4}{\sqrt{x^2+12}+4}=3\left(x-2\right)+\frac{x^2-4}{\sqrt{x^2+5}+3}\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3\right)=0\)

Vì \(\sqrt{x^2+12}+4>\sqrt{x^2+5}+3\Rightarrow\frac{x+2}{\sqrt{x^2+12}+4}< \frac{x+2}{\sqrt{x^2+5}+3}\)

Do đó : \(\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3< 0\)nên x - 2 = 0 \(\Leftrightarrow\)x = 2 

4 tháng 8 2018

a. ĐKXĐ: \(4-5x\ge0\) \(\Leftrightarrow-5x\ge-4\Leftrightarrow5x\le4\Leftrightarrow x\le\dfrac{4}{5}\)

\(\sqrt{4-5x}=12\)

\(\Leftrightarrow4-5x=2\sqrt{3}\)

\(\Leftrightarrow-5x=-4-2\sqrt{3}\)

\(\Leftrightarrow x=\dfrac{-4-2\sqrt{3}}{-5}\)

\(\Leftrightarrow x=\dfrac{4+2\sqrt{3}}{5}\left(KTMĐKXĐ\right)\)

Vậy x không tồn tại

b. \(10-2\sqrt{2x+1}=4\) (1)

\(ĐKXĐ:2x+1\ge0\Leftrightarrow2x\ge-1\Leftrightarrow x\ge-\dfrac{1}{2}\)

(1) => \(-2\sqrt{2x+1}=-6\)

\(\Leftrightarrow\sqrt{2x+1}=3\)

\(\Leftrightarrow2x+1=\sqrt{3}\)

\(\Leftrightarrow2x=\sqrt{3}-1\)

\(\Leftrightarrow x=\dfrac{\sqrt{3}-1}{2}\left(TMĐKXĐ\right)\)

c. \(5-\sqrt{x-1}=7\) (1)

ĐKXĐ: \(x-1\ge0\Leftrightarrow x\ge1\)

(1) <=> \(-\sqrt{x-1}=2\) (vô lí)

Vậy không tồn tại x

9 tháng 8 2018

bài kia làm sai rùi:

a. \(\sqrt{4-5x}=12\) (1)

ĐKXĐ: \(4-5x\ge0\Leftrightarrow x\le\dfrac{4}{5}\)

\(\Leftrightarrow4-5x=144\)

\(\Leftrightarrow5x=-140\)

\(\Leftrightarrow x=-28\left(TMĐKXĐ\right)\)

Vậy phương trình có nghiệm là \(S=\left\{-28\right\}\)

b. \(10-2\sqrt{2x+1}=4\) (1)

ĐKXĐ: \(2x+1\ge0\Leftrightarrow x\ge-\dfrac{1}{2}\)

\(\left(1\right)\Leftrightarrow2\sqrt{2x+1}=6\)

\(\Leftrightarrow\sqrt{2x+1}=3\)

\(\Leftrightarrow2x+1=9\)

\(\Leftrightarrow2x=8\)

\(\Leftrightarrow x=4\left(TMĐKXĐ\right)\)

Vậy phương trình có nghiệm là: \(S=\left\{4\right\}\)

c. Ở dưới làm đúng rồi

d. \(\sqrt{10+\sqrt{3x}}=2+\sqrt{6}\) (1)

ĐKXĐ: \(3x\ge0\Leftrightarrow x\ge0\)

(1) \(\Leftrightarrow10+\sqrt{3x}=\left(2+\sqrt{6}\right)^2\)

\(\Leftrightarrow10+\sqrt{3x}=10+4\sqrt{6}\)

\(\Leftrightarrow\sqrt{3x}=-10+10+4\sqrt{6}\)

\(\Leftrightarrow\sqrt{3x}=4\sqrt{6}\)

\(\Leftrightarrow3x=96\)

\(\Leftrightarrow x=32\left(TMĐKXĐ\right)\)

Vậy phương trình có nghiệm là: \(S=\left\{32\right\}\)

e. \(\sqrt{x+1}+10=2\sqrt{x+1}-2\) (1)

ĐKXĐ: \(x+1\ge0\Leftrightarrow x\ge-1\)

\(\left(1\right)\Leftrightarrow\sqrt{x+1}-2\sqrt{x+1}=-10-2\)

\(\Leftrightarrow-\sqrt{x+1}=-12\)

\(\Leftrightarrow\sqrt{x+1}=12\)

\(\Leftrightarrow x+1=144\)

\(\Leftrightarrow x=143\left(TMĐKXĐ\right)\)

Vậy phương trình có nghiệm là \(S=\left\{143\right\}\)

f. \(\sqrt{16x+32}-5\sqrt{x+2}=-2\) (1)

ĐKXĐ: \(\left[{}\begin{matrix}\sqrt{16x+32\ge0}\\\sqrt{x+2\ge0}\end{matrix}\right.\left[{}\begin{matrix}x\ge-2\\x\ge-2\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{16\left(x+2\right)}-5\sqrt{x+2}=-2\)

\(\Leftrightarrow4\sqrt{x+2}-5\sqrt{x+2}=-2\)

\(\Leftrightarrow-\sqrt{x+2}=-2\)

\(\Leftrightarrow\sqrt{x+2}=2\)

\(\Leftrightarrow x+2=4\)

\(\Leftrightarrow x=2\left(TMĐKXĐ\right)\)

Vậy phương trình có nghiệm là \(S=\left\{2\right\}\)

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Câu a:

ĐKXĐ:...........

\(\sqrt{x^2-x+9}=2x+1\)

\(\Rightarrow \left\{\begin{matrix} 2x+1\geq 0\\ x^2-x+9=(2x+1)^2=4x^2+4x+1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x^2+5x-8=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x(x-1)+8(x-1)=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (x-1)(3x+8)=0\end{matrix}\right.\Rightarrow x=1\)

Vậy.....

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Câu b:

ĐKXĐ:.........

Ta có: \(\sqrt{5x+7}-\sqrt{x+3}=\sqrt{3x+1}\)

\(\Rightarrow (\sqrt{5x+7}-\sqrt{x+3})^2=3x+1\)

\(\Leftrightarrow 5x+7+x+3-2\sqrt{(5x+7)(x+3)}=3x+1\)

\(\Leftrightarrow 3(x+3)=2\sqrt{(5x+7)(x+3)}\)

\(\Leftrightarrow \sqrt{x+3}(3\sqrt{x+3}-2\sqrt{5x+7})=0\)

\(x\geq -\frac{7}{5}\Rightarrow \sqrt{x+3}>0\). Do đó:

\(3\sqrt{x+3}-2\sqrt{5x+7}=0\)

\(\Rightarrow 9(x+3)=4(5x+7)\)

\(\Rightarrow 11x=-1\Rightarrow x=\frac{-1}{11}\) (thỏa mãn)

Vậy..........