Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Ta có (x-y)^2 >=0
(x-y)(x-y) >=0
x^2+y^2-2xy>=0
(x^2+y^2+2xy)-4xy>=0
(x+y)^2 >=4xy mà x+y=1
4xy <=1
xy<=1/4
dấu = xảy ra <=> (x-y)^2=0
<=>x-y=0 <=> x=y mà x+y=1
<=> x=y=0,5
GTLn của bt là 1/4 tại x=y=0,5
2. (* chú ý nè : Tổng các hệ số của 1 đa thức sau khi bỏ dấu ngoặc là giá trị của đa thức đó tại biến =0)
Bài này bạn chỉ cần thay x=1 vào rồi tính thui
Đáp số là: 8^2019
3.f(-2)=4a-2b+c
f(3)=9a+3b+c
=> f(-2)+f(3) =13a+b+2c=0
=> f(-2)=-f(3)
=> f(-2). f(3)= -f(3) .f(3)=-[f(3)]^2
Mà -[f(3)]^2<=0 với mọi a,b,c
=> f(-2). f(3)<=0
T i ck cho mình ủng hộ nha
a,\(A=x^{2005}-2006x^{2004}+............+2006x-1\\ A=x^{2005}-\left(x+1\right)x^{2004}+..............+\left(x+1\right)x-1\\ A=x^{2005}-x^{2005}+x^{2004}-x^{2004}+.............+x^2+x-1\\ A=x-1\\ \Leftrightarrow A=2004\)vậy
a,A=x2005−2006x2004+............+2006x−1A=x2005−(x+1)x2004+..............+(x+1)x−1A=x2005−x2005+x2004−x2004+.............+x2+x−1A=x−1⇔A=2004
Tổng các hệ thức khi bỏ dấu ngoặc là
(3-4+1)2018.(3+4+1)2018=0
.
Bài 3 :
1. Thay x = -5 vào f(x) ta được :
\(\left(-5\right)^2-4\left(-5\right)+5=50\)
Vậy x = -5 không là nghiệm của đa thức trên .
Bài 2 :
1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)
=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)
=> \(f_{\left(x\right)}=x^2+4\)
=> \(x^2+4=0\)
Vậy đa thức trên vô nghiệm .
2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)
=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)
=> \(g_{\left(x\right)}=0\)
Vậy đa thức trên vô số nghiệm .
3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)
=> \(h_{\left(x\right)}=x^2-x+1\)
=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)
Vậy đa thức vô nghiệm .
Bài 3:
\(f\left(x\right)=x^2+4x-5.\)
+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:
\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)
\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)
\(\Rightarrow f\left(x\right)=25-20-5\)
\(\Rightarrow f\left(x\right)=5-5\)
\(\Rightarrow f\left(x\right)=0.\)
Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)
Chúc bạn học tốt!
Tổng các hệ số của đa thức là giá trị của đa thức đó tại biến bằng 1
Ta có \(f\left(x\right)=\left(1-2.1+2.1^2\right)^{2019}\)
\(=1^{2019}=1\)
Vậy tổng các hệ số của đa thức f(x) sau khi phá ngoặc là 1
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)
mà 3^6/9-81=0 => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0
\(A=2x^2-2\ge-2\)
Dấu "=" xảy ra khi: \(x=0\)
\(B=\left|x+\dfrac{1}{3}\right|-\dfrac{1}{6}\ge-\dfrac{1}{6}\)
Dấu "=" xảy ra khi: \(x=-\dfrac{1}{3}\)
\(C=\dfrac{\left|x\right|+2017}{2018}\ge\dfrac{2017}{2018}\)
Dấu "=" xảy ra khi: \(x=0\)
\(D=3-\left(x+1\right)^2\le3\)
Dấu "=" xảy ra khi: \(x=-1\)
\(E-\left|0,1+x\right|-1,9\le-1,9\)
Dấu "=" xảy ra khi: \(x=-0,1\)
\(F=\dfrac{1}{\left|x\right|+2017}\le\dfrac{1}{2017}\)
Dấu "=" xảy ra khi: \(x=0\)