Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3x+2.x+1)2=(5x+1)2
hệ số bậc nhất 5
hệ số tự do 1
tổng các hệ số là 5+1=6
Tổng các hệ số của đa thức \(f\left(x\right)\)bất kỳ bằng giá trị của nó tại x=1
Ta có:\(f\left(1\right)=\left(3-4\cdot1+1^2\right)^{2017}+\left(4-5\cdot1+2\cdot1^2\right)^{2017}\)
\(=0^{2017}+1^{2017}\)
\(=1\)
Ta biết rằng: Mọi đa thức f(x) sau khi khai triển đều có dạng: \(f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\)
Ta thấy rằng: Thay x = 1 vào,ta được: \(f\left(1\right)=a_n+a_{n-1}+...+a_1+a_0\) đúng bằng tổng các hệ số của đa thức sau khi khai triển.
Áp dụng vào,ta có: Tổng các hệ số của đa thức f(x) là giá trị của f(x) tại x = 1:
\(=\left(1+4-5+1\right)^{2013}-\left(2-4+4-1\right)^{2014}=1-1=0\)
\(f\left(1\right)=\left(1^4+4.1^2-5.1+1\right)^{2013}-\left(2.1^4-4.1^2+4.1-1\right)^{2014}\)
\(=1^{2013}-1^{2014}\)
\(=0\)