K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TT
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DL
1
AH
Akai Haruma
Giáo viên
6 tháng 8 2021
Lời giải:
$A(x)=(x^3-x)+(ax^2-a)=x(x^2-1)+a(x^2-1)=(x+a)(x^2-1)$
$=(x+a)B(x)$
Do đó $A(x)$ luôn chia hết cho $B(x)$ với mọi $a$
22 tháng 12 2021
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
CM
29 tháng 11 2019
a) A = ( x 2 – 6x)B.
b) A = (-x – 8)B + 2
c) A = (x + 3)B + 6.
Để đa thức P(x)=x3+ax2+bx+1 chia hết cho Q(x)=x2+3x+1 thì:
\(\left(b-3a+8\right)x+\left(4-a\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}b-3a+8=0\\4-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}b-3a=-8\\a=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b-12=-8\\a=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=4\\b=4\end{cases}}\)
Vậy a = b = 4 thì đa thức P(x)=x3+ax2+bx+1 chia hết cho Q(x)=x2+3x+1