Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=1+2+2^2+.........+2^{2009}+2^{2010}\)
\(\Leftrightarrow A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+.......+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(\Leftrightarrow A=1\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...........+2^{2008}\left(1+2+2^2\right)\)
\(\Leftrightarrow A=1.7+2^3.7+.........+2^{2008}.7\)
\(\Leftrightarrow A=7\left(1+2^3+......+2^{2008}\right)⋮7\)
Vậy A chia 7 dư 0
\(1+2+2^2+...+2^{2009}+2^{2010}\)
\(1+\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
=\(1+2\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
=\(1+\left(2+2^4+...+2^{2008}\right)\left(1+2+2^2\right)\)
=\(1+\left(2+2^4+...+2^{2008}\right)7\)
=>\(1+2+2^2+...+2^{2009}+2^{2010}\) chia cho 7 dư 1
a) Tổng C có số số hạng là :
( 20 - 1 ) : 1 + 1 = 20 ( số )
Ta thấy \(20⋮2\)nên khi ta nhóm 2 số lại thì sẽ không có số nào bị thừa cả
Ta có :
\(C=2009+2009^2+2009^3+......+2009^{20}\)
\(C=\left(2009+2009^2\right)+\left(2009^3+2009^4\right)+.....+\left(2009^{19}+2009^{20}\right)\)
\(C=1.\left(1+2009\right)+2009^3.\left(1+2009\right)+......+2009^{19}.\left(1+2009\right)\)
\(C=1.2010+2009^3.2010+.....+2009^{19}.2010\)
\(C=2010.\left(1+2009^3+....+2009^{19}\right)\)
Vậy \(C⋮2010\left(ĐPCM\right)\)
b) Gọi số cần tìm là : a \(\left(a\ne0;a\inℤ\right)\)
Vì a chia cho 5 dư 3 nên \(a-3⋮5\)suy ra \(a-3+5⋮5\Rightarrow a+2⋮5\)
Vì a chia cho 6 dư 4 nên \(a-4⋮6\)suy ra \(a-4+6⋮6\Rightarrow a+2⋮6\)
Vì a chia cho 7 dư 5 nên \(a-5⋮7\)suy ra \(a-5+7⋮7\Rightarrow a+2⋮7\)
Vì \(\hept{\begin{cases}a+2⋮5\\a+2⋮6\\a+2⋮7\end{cases}\Rightarrow a+2\in BC\left(5;6;7\right)}\)
Vì a phải là nhỏ nhất nên \(a+2\in BCNN\left(5;6;7\right)\)
Vì \(\left(5;6;7\right)=1\)nên \(BCNN\left(5;6;7\right)=5.6.7=210\)
\(\Rightarrow a+2=210\)
\(\Rightarrow a=210-2\)
\(\Rightarrow a=208\)
Vậy \(a=208\)