Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tích ba số bất kì là một số âm. Tức là tất cả 40 số nguyên trên đều là số âm. Vì nếu có một số là số dương sẽ xảy ra trường hợp: số âm x số âm x số dương = số dương.
mà 40 là số chẵn.
= > Vậy tích 40 số nguyên trên là một số nguyên dương
k cho mk nhoa
Nguyễn Minh bạn chỉ đăng 1,2 câu trả lời thôi nhé , chứ dài quá
Mình sẽ làm bài 1,2
1.\(a,\frac{61}{11}x+\frac{97}{11}x+\frac{25}{11}=\frac{37}{11}x-\frac{8}{11}\)
\(\Leftrightarrow\frac{61}{11}x+\frac{97}{11}x+\frac{25}{11}-\frac{37}{11}x=-\frac{8}{11}\)
\(\Leftrightarrow\frac{61}{11}x+\frac{97}{11}x-\frac{37}{11}x+\frac{25}{11}=-\frac{8}{11}\)
\(\Leftrightarrow\frac{121}{11}x=-3\)
\(\Leftrightarrow11x=-3\Leftrightarrow x=-\frac{3}{11}\)
\(b,3x-\frac{15}{5\cdot8}-\frac{15}{8\cdot11}-\frac{15}{11\cdot14}-...-\frac{15}{47\cdot50}=\frac{21}{10}\)
\(3x-\left[\frac{15}{5\cdot8}-\frac{15}{8\cdot11}-\frac{15}{11\cdot14}-...-\frac{15}{47\cdot50}\right]=\frac{21}{10}\)
\(3x-\left[5\left\{\frac{3}{5\cdot8}-\frac{3}{8\cdot11}-\frac{3}{11\cdot14}-...-\frac{3}{47\cdot50}\right\}\right]=\frac{21}{10}\)
Làm nốt :v
2. Gọi hai phân số đó là \(\frac{a}{b}\)và \(\frac{c}{d}\)
Theo đề bài ta có : \(\frac{a}{b}+\frac{c}{d}=\frac{4}{33}\Rightarrow\frac{ad+bc}{bd}=\frac{4}{33}\Rightarrow ad+bc=\frac{4}{33}bd\)
\(\frac{a}{b}\cdot\frac{c}{d}=-\frac{4}{11}\Rightarrow\frac{bd}{ac}=\frac{-11}{4}\)
Tổng các số nghịch đảo của hai phân số trên là :
\(\frac{b}{a}+\frac{d}{c}=\frac{bc+ad}{ac}=\frac{\frac{4}{33}bd}{ac}=\frac{4}{33}\cdot\left[-\frac{11}{4}\right]=-\frac{1}{3}\)
bạn tham khảo tại bài này nhé dựa vào bài giải đó mà làm :)
Câu hỏi của ngô thị gia linh - Toán lớp 7 - Học toán với OnlineMath
Bạn vào đây tham khảo nha
Câu hỏi của ngô thị gia linh-Toán lớp 7-Học toán với OnlineMath
Bạn ê , coi lại đề sai hay ko , chứ cho 2017 số hữu tỉ mới làm được , cho 2018 số hữu tỉ làm ko ra . Xem lại đề với nhé
Gọi 16 số đó là \(p_1,p_2,...,p_{16}\)
Theo đề bài, ta có \(p_1+p_2+p_3>0\), \(p_4+p_5+p_6>0\), \(p_7+p_8+p_9>0\), \(p_{10}+p_{11}+p_{12}>0\) và \(p_{13}+p_{14}+p_{15}>0\). Do đó \(p_1+p_2+...+p_{14}+p_{15}>0\).
Tương tự, ta có \(p_1+p_2+...+p_{14}+p_{16}>0\)
...
\(p_1+p_3+...+p_{15}+p_{16}>0\)
\(p_2+p_3+...+p_{15}+p_{16}>0\)
Cộng theo vế 16 bất đẳng thức tìm được, ta có \(15\left(p_1+p_2+...+p_{16}\right)>0\) \(\Leftrightarrow p_1+p_2+...+p_{16}>0\) (đpcm)
Để chứng minh rằng tổng của 16 số hữu tỷ khác nhau và khác 0 là số dương, ta sẽ sử dụng phản chứng (proof by contradiction).
Giả sử tổng của 16 số đó không là số dương. Tức là tổng của 16 số đó là số không hoặc số âm.
Đặt tổng của 16 số là S.
Vì 16 số hữu tỷ khác nhau và khác 0, nên ta có thể chia chúng thành 8 cặp số đối xứng: (a₁, a₂), (a₃, a₄), (a₅, a₆), ..., (a₁₅, a₁₆).
Tổng của mỗi cặp số đối xứng là dương vì theo điều kiện đề bài, tổng của 3 số bất kỳ là số dương.
Vậy ta có: S = (a₁ + a₂) + (a₃ + a₄) + (a₅ + a₆) + ... + (a₁₅ + a₁₆).
Giả sử tổng của 16 số đó không là số dương, tức là S ≤ 0.
Vì mỗi cặp số đối xứng có tổng dương, nên ta không thể có trường hợp nào mà S ≤ 0.
Do đó, giả định ban đầu là sai.
Vậy, tổng của 16 số hữu tỷ khác nhau và khác 0 là số dương.
Trong 25 số đã cho có ít nhất 1 số là số dương (vì nếu 25 số đã cho đều âm thì tổng của 4 số bất kỳ không thể là 1 số dương)
Tách riêng số dương đó ra còn 24 số, nhóm 4 số vào 1 nhóm thì được 6 nhóm. Trong đó nhóm nào cũng là 1 số dương
=> Tổng của 24 số là 1 số dương cộng thêm 1 số dương đã tách.
Vậy tổng của 25 số đó là 1 số dương
a) Tổng của 4 số là 1 số dương nên chắc chắn trong 4 số đó có 1 số dương
Bớt số dương đó ra => còn lại 12 số . Chia 12 số đó thành 3 nhóm, mỗi nhóm có 4 chữ số
=> Giá trị mỗi nhóm là số dương => Tổng 12 số đó dương
Cộng với số dương đã bớt ra => tổng của 13 số đã cho dương
nhanh giúp với ạ