\(n^3+2018n=2018^{2018}+1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2019

hahagiúp mk nhaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaayeu

13 tháng 12 2018

Thỏa mãn đk bằng 0 nhé anh em

10 tháng 7 2018

\(m;n\in N\) nên ta xét như sau:

Với \(m=0\) thì: \(2^m+2017=2018\)

Khi đó: \(\left|n-2018\right|+n-2018=2018\)

\(\Leftrightarrow\left[{}\begin{matrix}n-2018+n-2018=2018\left(n\ge2018\right)\\2018-n+n-2018=2018\left(n< 2018\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2n-4036=2018\Leftrightarrow n=3027\\0=2018\left(loai\right)\end{matrix}\right.\)

Với \(m>0\) thì: \(2^m+2017\) luôn lẻ. Mặt khác: \(\left|n-2018\right|\)\(n-2018\) cùng tính chẵn lẻ nên: \(\left|n-2018\right|+n-2018\) chẵn. Suy ra không có bộ số \(m;n\) thỏa mãn.

Vậy \(\left(m;n\right)=\left(0;3027\right)\)

NV
5 tháng 1 2019

\(\left(a+b+c\right)\left(ab+ac+bc\right)=\left(a+b+c\right)\left(ab+ac+bc+c^2-c^2\right)\)

\(=\left(a+b+c\right)\left(\left(a+c\right)\left(b+c\right)-c^2\right)\)

\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)-c^2\left(a+b\right)+c\left(a+c\right)\left(b+c\right)-c^3\)

\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)-c^2a-c^2b+abc+c^2a+c^2b+c^3-c^3\)

\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)+abc=\left(a+b\right)\left(a+c\right)\left(b+c\right)+2018\)

\(\Rightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)+2018=2018\)

\(\Rightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

Ta có:

\(A=\left(b^2c+2018\right)\left(c^2a+2018\right)\left(a^2b+2018\right)\)

\(A=\left(b^2c+abc\right)\left(c^2a+abc\right)\left(a^2b+abc\right)\)

\(A=bc\left(a+b\right)ac\left(b+c\right)ab\left(a+c\right)\)

\(A=\left(abc\right)^2\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

\(A=2018^2.0=0\)

4 tháng 1 2019

vượt trước chương trình tí, mình dùng cosi nhé bạn

Áp dụng BĐT AM-GM ta có

ta có \(\dfrac{x^3+y^3+1}{3}\ge\sqrt[3]{x^3.y^3.1}=xy\)

\(\Rightarrow x^3+y^3\ge3xy-1\)

dấu ''='' xảy ra \(\Leftrightarrow x=y\)

\(\Rightarrow2x^3=3x^2-1\)

\(\Leftrightarrow2x^3-3x^2+1=0\)

\(\Leftrightarrow2x^3-2x^2-x^2+x-x+1=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x^2-x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x^2-2x+x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)

Với \(x=1\Leftrightarrow A=2\)

Với \(x=-\dfrac{1}{2}\Leftrightarrow A=\dfrac{1}{2^{2018}}-\dfrac{1}{2^{2019}}=\dfrac{1}{2^{2019}}\)