Tồn tại hay không số nguyên dương n để
n^5 −n+3 là số chính phương?

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2021

5526256425423+64525651265421645=?

28 tháng 1 2021

conan88888888+5555555555=?

14 tháng 11 2016

giải sử 1002 + n2là số chính phương

=> 1002 + n2=a2

=> a2-n2=1002

mà hiệu của hai số chính phương chia 4 số dư chỉ có thể là 0 hoặc 1

mà 1002 chia 4 dư 2

=> không tồn tại số tự nhiên n để 1002 + n2 là số chính phương

15 tháng 11 2016

nhi giỏi ghê ta, khâm phục!!!

23 tháng 7 2018

a) Gọi 4 số tự nhiên liên tiếp đó là: n ; n+1; n+2; n+3 (n thuộc N)

Ta có: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)

    \(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\left(\cdot\right)\)

Đặt n2 + 3n = t (t thuộc N) thì \(\left(\cdot\right)=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\)

Vì n thuộc N nên (n2+3n+1) thuộc N

=> Vậy n(n+1)(n+2)(n+3)+1 là 1 số chính phương

24 tháng 7 2018

tính giá trị của biểu thức 

a, 2x^2(ax^2+2bx+4c)=6x^4-20x^3-8x^2 với mọi x

b, (ax+b)(x^2-cx+2)=x^3+x^2-2 với mọi x

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
17 tháng 2 2020

Ta có: \(n^5-n+2=n\left(n^4-1\right)+2\)

\(=n\left(n^2+1\right)\left(n^2-1\right)+2\)

\(=\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)+2\)

Ta có n - 1; n; n + 1 là 3 số tự nhiên liên tiếp nên \(\left(n-1\right)n\left(n+1\right)⋮3\)

\(\Rightarrow\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)⋮3\)

Suy ra \(\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)+2\)chia 3 dư 2.

Mà ta có: Số chính phương chia 3 dư 0 hoặc 1

Thật vậy: +) Nếu m = 3k thì \(m^2=9k^2⋮3\)(chia 3 dư 0)

                +) Nếu m = 3k + 1 thì \(m^2=9k^2+6k+1\)(chia 3 dư 1)

                +) Nếu m = 3k + 2 thì \(m^2=9k^2+12k+4\)(chia 3 dư 1)

Vậy không có số nguyên dương n để n5 - n + 2 là số chính phương.

19 tháng 7 2021

Do x;y có vai trò tương đương nhau nên ko giảm tính tổng quát của bài toán, ta giả sử:x>= y
Suy ra: x^2<x^2+y=<x^2+x<(x+1)^2 mà x;y nguyên dương => x^2+y không phải là scp.
        Vậy không tồn tại 2 số x;y sao cho x^2+y; y^2+x

16 tháng 3 2023

Lỡ có sai sót thì thông cảm giúp mình nha:3