Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right).\left(5x+6\right)}=\frac{2010}{2011}\)
\(\Rightarrow1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2010}{2011}\)
\(\Rightarrow1-\frac{1}{5x+6}=\frac{2010}{2011}\)
\(\Rightarrow\frac{1}{5x+6}=1-\frac{2010}{2011}\)
\(\Rightarrow\frac{1}{5x+6}=\frac{1}{2011}\)
\(\Rightarrow5x+6=2011\)
\(\Rightarrow5x=2011-6\)
\(\Rightarrow5x=2005\)
\(\Rightarrow x=401\)
- x;y đối nhau thì x+y = 0, Phân số \(\frac{1}{x+y}\)vô nghĩa nên x;y đối nhau không phải là nghiệm. (1)
- Ta lại có: \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\Leftrightarrow\frac{1}{x+y}=\frac{x+y}{xy}\Leftrightarrow xy=\left(x+y\right)^2>0\)(*) với mọi x;y không đối nhau.
- Nếu x,y trái dấu thì tích xy <0 không thỏa mãn (*) nên không phải là nghiệm của bài toán (2).
- Từ (1) và (2) suy ra không tồn tại số hữu tỷ x,y trái dấu, không đối nhau thỏa mãn đẳng thức của đề bài. (ĐPCM)
a.N=1-5-9+13+17-21+...+2001-2005-2009+2013+2017
N = ( 1 - 5 - 9 + 13 ) + ( 17 - 21 - 25 + 29 ) + .... + ( 2001 - 2005 - 2009 + 2013 ) + 2017
N = 0 + 0 + ... + 0 + 2017
N = 2017
\(B=\left(1-\frac{1}{2010}\right)x\left(1-\frac{2}{2010}\right)x\left(1-\frac{3}{2010}\right)x...x\left(1-\frac{2011}{2010}\right)\)
\(B=\left(1-\frac{1}{2010}\right)x\left(1-\frac{2}{2010}\right)x\left(1-\frac{3}{2010}\right)x....x\left(1-\frac{2010}{2010}\right)x\left(1-\frac{2011}{2010}\right)\)
\(B=\left(1-\frac{1}{2010}\right)x\left(1-\frac{2}{2010}\right)x\left(1-\frac{3}{2010}\right)x...x\left(0\right)x\left(1-\frac{2011}{2010}\right)\)
\(B=0\)
Bài 2:
a) Để phân số \(\frac{10^{2011}+2}{3}\) là số tự nhiên thì \(10^{2011}+2⋮3\)
Ta có:102011 có tận cùng là chữ số 0
⇔Tổng các chữ số của 102011 là 1
⇔Tổng các chữ số của 102011+2 là 3
⇔\(10^{2011}+2⋮3\)(dấu hiệu chia hết cho 3)
hay \(\frac{10^{2011}+2}{3}\) là số tự nhiên(đpcm)
đố vui
1 ơi + 2 ơi = bằng mấy ơi ?
đây là những câu đố vui sau những ngày học mệt nhọc
4 ơi??? hay 5 ơi, mjk hok bjk chịu thua nèk, pn ns đi Anh Nguyễn Lê Quan
Ta có: \(\frac{2010}{x}-\frac{2010}{y}=\frac{2010y-2010x}{xy}\)
\(\Rightarrow\frac{2010\left(y-x\right)}{xy}=\frac{2010}{x-y}\)
\(\Rightarrow2010\left(y-x\right)\left(x-y\right)=2010xy\)
\(\Rightarrow\left(y-x\right)\left(x-y\right)=xy\)
Vậy ta có 4 trường hợp:
TH1: y-x=x
=> y=2x
=> x-y = âm => xy= âm ( loại)
TH2: y-x=y
=> x= 0 ( vì x, y dương)
=> x-y= âm => xy = âm ( loại)
TH3: x-y=y
=> x=2y
=> y-x = âm => xy = âm ( loại)
TH4: x-y=x
=> y = 0 ( vì x, y dương)
=> y-x= 0-x= âm => xy âm ( loại)
Từ 4 trường hợp trên \(\Rightarrow\) ko tồn tại x, y dương để \(\frac{2010}{x}-\frac{2010}{y}=\frac{2011}{x-y}\)
Ta có :
\(\frac{2010}{x}-\frac{2010}{y}=\frac{2011}{x-y}\Leftrightarrow2010\left(\frac{1}{x}-\frac{1}{y}\right)=2011.\frac{1}{x-y}\Leftrightarrow\frac{2010}{2011}=\frac{\frac{1}{x-y}}{\frac{1}{x}-\frac{1}{y}}\Leftrightarrow\frac{2010}{2011}=\frac{\frac{1}{x-y}}{\frac{x-y}{-xy}}\Leftrightarrow\frac{2010}{2011}=-\frac{xy}{\left(x-y\right)^2}\)
Xét vế trái (VT) : \(\frac{2010}{2011}>0\) ; Vế phải (VP) : \(-\frac{xy}{\left(x-y\right)^2}< 0\)với mọi x,y dương
=> VP < VT (vô lí)
Vậy : Không tồn tại các số x,y dương thỏa mãn đề bài.