K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(P=\frac{x+7}{\sqrt{x}+3}=\frac{x-9+16}{\sqrt{x}+3}=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x-3}\right)+16}{\sqrt{x}+3}\)\(=\sqrt{x}-3+\frac{16}{\sqrt{x}+3}\)

\(P+6=\sqrt{x}+3+\frac{16}{\sqrt{x}+3}\)

Theo Cô si ta có : \(\sqrt{x}+3+\frac{16}{\sqrt{x}+6}\ge2\sqrt{\sqrt{x}+3\times\frac{16}{\sqrt{x}+3}}\)=\(2\sqrt{16}=8\)

Vậy \(P+6\ge8\)\(=>P\ge2\)

Dấu bằng xảy ra \(< =>\left(\sqrt{x}+3\right)^2=16\)

\(x+6\sqrt{x}+9-16=0\)

\(x+6\sqrt{x}-7=0\)

\(\left(\sqrt{x}-1\right)\left(\sqrt{x}+7\right)=0\)

\(\orbr{\begin{cases}\sqrt{x}=1\left(tm\right)\\\sqrt{x}=-7\left(l\right)\end{cases}}\)

Vậy min P =2 \(< =>x=1\)

18 tháng 8 2016

bạn viết lại đề bài theo công thức nha, chả hiểu đề bài viết gì mà làm.