Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 4p+3 = 17m+9= 19n+13
A+25 =4p+28= 17m+34 =19n+38
nhận thấy A+25 đồng thời chia hết cho 4, 17 và 19
vậy A+25 chia hết cho 4.17.19 =1292
A chia 1292 dư (1292-25) = 1267
Để tìm số tự nhiên nhỏ nhất có 2 chữ số thỏa mãn yêu cầu đề bài, ta cần tìm số đó bằng cách thử từng số tự nhiên có 2 chữ số cho đến khi tìm được số thỏa mãn yêu cầu.
Ta gọi số cần tìm là AB (với A và B lần lượt là chữ số hàng chục và hàng đơn vị của số đó). Theo đề bài, ta có:
- AB chia cho 8 dư 7: tức là AB = 8k + 7 với k là số nguyên dương nào đó.
- AB chia cho 7 dư 4: tức là AB = 7m + 4 với m là số nguyên dương nào đó.
Từ hai phương trình trên, ta suy ra:
- 8k + 7 = 7m + 4
- 8k - 7m = -3
Để giải phương trình này, ta thử các giá trị nguyên dương của k và m cho đến khi tìm được cặp giá trị thỏa mãn phương trình. Ta có:
- Khi k = 1, m = 2: 8 - 7 = -3 (không thỏa mãn)
- Khi k = 2, m = 3: 16 - 21 = -5 (không thỏa mãn)
- Khi k = 3, m = 4: 24 - 28 = -4 (khớp với phương trình)
Vậy số tự nhiên nhỏ nhất có 2 chữ số thỏa mãn yêu cầu đề bài là số 27.
👍
Những số có 2 chữ số chia cho 8 dư 7 là:
16+7,24+7,32+7,40+7,...88+7
= 23,31,39,47,...,95
Những số có 2 chữ số chia 7 dư 4 là:
14+4,21+4,28+4,...91+4
= 18,25,32,39,...95
Ở 2 dãy số trên, ta thấy số bé nhất mà 2 dãy lặp lại là 39, nên số cần tìm mà thỏa mãn đề bài là số 39
Gọi số đó là a. Theo đề ra ta có:
a chia 5 dư 4 => a+1 chia hết cho 5
a chia 4 dư 3 => a+1 chia hết cho 4
a chia 3 dư 2 => a+1 chia hết cho 3
a chia 2 dư 1 => a+1 chia hết cho 2
=> a+1 là BCNN(2;3;4;5)
BCNN(2;3;4;5)=60
a+1=60 => a=59
Vậy a=59