![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Như mình đã hứa, giờ mk sẽ làm!
A B C D H E I K
Xét\(\Delta AED\)vuông tại A có I là trung điểm ED
\(\Rightarrow AI=EI=ID\)
\(\Rightarrow\Delta AIE\)cân tại I
Tương tự, ta được \(\Delta AKC\) cân tại K
\(\Rightarrow\widehat{IAE}=\widehat{EIA};\widehat{KAC}=\widehat{C}\)
Mà \(\widehat{C}=\widehat{IEA}+\widehat{CKE}\)
\(\widehat{KAC}=\widehat{IAE}+\widehat{IAK}\)Do đó \(\widehat{IAK}=\widehat{CKE}\)
Gọi H giao điểm của AI và BC ta có
\(\widehat{HIK}+\widehat{HKI}=\widehat{AIK}+\widehat{IAK}=90^o\)
\(\Rightarrow AI\perp BC\)
b) Ta có: DE=2AI; BC=2AK
Mà \(AI\ge AK\), do đó \(DE\ge BC\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Sắp phải ăn cơm nên không có thời gian để vẽ hình bạn tự vẽ lấy nhé :3
Kẻ DH // AB
\(\widehat{DHB}=\widehat{ACB}\)( đồng vị )
Mà \(\widehat{ABC}=\widehat{ACB}\left(gt\right)\)
\(\Rightarrow\)\(\widehat{ABC}=\widehat{DHB}\)\(\Rightarrow\)\(\Delta DHB\)cân
\(\Rightarrow\)\(DH=DB\) ( 1 )
Xét tam giác CEI và tam giác IDH ta có ;
\(CE=DH\)
\(EI=ID\left(gt\right)\)
\(\widehat{CEI}=\widehat{IDH}\)
\(\Rightarrow\)\(\Delta CEI=\Delta IDH\left(c-g-c\right)\)
\(\Rightarrow\)\(\widehat{CIE}=\widehat{DIH}\)
Mà \(\widehat{CIE}+\widehat{CID}=180\)độ
\(\Rightarrow\)\(\widehat{DIH}+\widehat{CID}=180\)độ
\(\Rightarrow\)B ; I ; C thẳng hàng
Vậy B ; I ; C thẳng hàng ( ĐPCM )
Vẽ DG // BC và cắt AC tại G
Do DG // BC nên tứ giác DGCB là hình thang ( đáy DG // BC), mà tam giác ABC cân tại A => góc B = C => DGBC là hình thang cân ( đáy DG // BC) => DB = GC ( tính chất
của hình thang cân)
Mà DB = CE => GC = CE và C thuộc GE => C là tđ của GE
Xét tam giác DGE có: C là tđ GE ; CF // DG ( Do DG // BC mà CF thuộc BC) => CF là đg trung bình ứng vs đáy DG của tam giác DGE => F là trung điểm của DE
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
chỉ cần tra trên google là : web học py-ta-go
nếu đúng cho mk 1 tk
mk đang bị trừ điểm
![](https://rs.olm.vn/images/avt/0.png?1311)
bạn vào trang web 70 bài toán nâng cao lớp 7 có đáp án vndoc (nhớ k mik đó)
Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).
a) Chứng minh: EM + HC = NH.
b) Chứng minh: EN // FM.
ta có: \(\widehat{KAC}=\widehat{KCA}\) ( \(\Delta KAC\)cân tại \(K\))
\(\widehat{IAE}=\widehat{IEA}\) ( \(\Delta IAE\) cân tại \(I\))
\(\widehat{KBA}=\widehat{KAB}\) ( \(\Delta KBA\) cân tại \(K\) )
\(\widehat{IAE}=\widehat{KAB}\) ( cùng phụ với \(\widehat{KIA}\))
\(\Rightarrow\widehat{IEA}=\widehat{KBA}\)
xét \(\Delta KAE\)và \(\Delta ACB\) có:
\(\widehat{KAC}=\widehat{KCA}\)
\(\widehat{KBA}=\widehat{IEA}\)
\(\widehat{AKE}=\widehat{BAC}\) \(\left(=90^0\right)\)
\(\Rightarrow\Delta KAE=\Delta ACB\) ( G.G.G )
\(\Rightarrow AE=CB\)
\(KE=AB\)
\(AK=AC\)
b) theo câu a) \(AE=CB\)
xét trong \(\Delta DAE\) vuông có
\(AE\) là cạnh góc vuông
\(DE\) là cạnh huyền
\(\Rightarrow AE< DE\)
\(\Rightarrow DE>BC\)
bài nào đây bạn