K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2021

undefined

Xét ΔBAD và ΔBDE có:

BD là cạnh chung

B1=B2 (BD là tia phân giác của \(\widehat{B}\))

BA = BE (GT)

Nên ΔBAD= ΔBDE (c.g.c)

=>\(\widehat{ADB}=\widehat{BDE}\)

Ta có:\(\widehat{ADB}+\widehat{ADF}=\widehat{BDF}\)

         \(\widehat{BDE}+\widehat{EDC}=\widehat{BDC}\)

Mà :\(\widehat{ADB}=\widehat{BDE}\)(CMT)

        \(\widehat{ADF}=\widehat{EDC}\)( 2 góc đối đỉnh)

=>\(\widehat{BDF}=\widehat{BDC}\)

Xét ΔBDF và Δ BDC, có:

\(\widehat{BDF}=\widehat{BDC}\)

BD là cạnh chung

B1=B2

Nên ΔBDF=ΔBDC (g.c.g)

=>DC = DF

b)Ta có:ΔEDC vuông tại E=> DC là cạnh lớn nhất hay DC>DE

MÀ DE=AD (ΔBAD và ΔBDE)

=> AD< DC

 

3 tháng 8 2021

c) Ta có BE=BA=>ΔBEA cân tại B

Mà BD là tia phân giác=>BD là đường trung trực

Vì :ΔBDF=ΔBDC=>BF=BC 

=>ΔBFC cân tại B=>\(\widehat{C}=\widehat{F}\)

Ta có:\(\widehat{B}+\widehat{C}+\widehat{F}=180^o\)

=>\(\widehat{B}+\widehat{C}.2=180^O\)

=>\(\widehat{C}=\dfrac{180^O-\widehat{B}}{2}\)(1)

vÌ ΔBAE  cân tại B

Tương tự ta có:

\(\widehat{E}=\dfrac{180^o-\widehat{B}}{2}\)(2)

Từ (1) và (2)=> \(\widehat{E}=\widehat{C}\)

Mà 2 góc này ở vị trí đồng vị=>AE // FC

24 tháng 5 2021

a)xét ΔABE và ΔADE có:

AE là cạnh chung

\(\widehat{DAE}=\widehat{BAE}\)(AE là tia phân giác của \(\widehat{BAD}\))

AD=AB(gt)

⇒ ΔABE=ΔADE(c-g-c)

b)gọi I là giao điểm của AE và BD ta được:

xét ΔADI và ΔABI có:

AI là cạnh chung

\(\widehat{DAI}=\widehat{BAI}\)(AI là tia phân giác của \(\widehat{BAD}\))

AD=AB(gt)

⇒ΔADI=ΔABI(c-g-c)

.ID=IB(2 cạnh tương ứng)(1)

    .\(\widehat{DIA}=\widehat{BIA}\)(2 góc tương ứng)(2)

Mà \(\widehat{DIA}+\widehat{BIA}=180^o\)(2 góc kề bù)(3)

Từ (2) và (3) ⇒\(\widehat{DIA}=\widehat{BIA}=\dfrac{180^o}{2}=90^o\)(4)

Từ (1) và (4) ⇒AE là trung trực của BD(đ.p.c.m)

c)xét ΔEBF có:EF là cạnh huyền⇒EF>EB

Mà DE=BE

⇒DE<EF(đ.p.cm)

d)ta có:

vì ΔABE=ΔADE ⇒\(\widehat{EBA}=\widehat{EDA}=90^o\)

xét ΔCDE và ΔFBE có:

\(\widehat{EBF}=\widehat{EDC}=90^o\)

\(\widehat{CED}=\widehat{FEB}\)(2 góc đối đỉnh)

ED=EB( ΔABE=ΔADE)

⇒ ΔCDE=ΔFBE(g-c-g)

⇒CE=EF(2 cạnh tương ứng)

⇒ΔCEF cân tại E

\(\widehat{CFE}=\dfrac{180^o-\widehat{CEF}}{2}\)

vì ΔABE=ΔADE⇒ED=EB(2 cạnh tương ứng)

⇒ΔEDB cân tại E

\(\widehat{EDB}=\dfrac{180^o-\widehat{DEB}}{2}\)

Mà \(\widehat{DEB}=\widehat{CEF}\)(2 góc đối đỉnh)

\(\widehat{CFE}=\widehat{BDE}\)

⇒CF//BD

Mà AG⊥BD

⇒AG⊥CF(đ.p.cm)

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>góc BED=90 độ

=>DE vuông góc CB

c: BA=BE

DA=DE
=>BD là trung trực của AE

d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

=>ΔDAF=ΔDEC

=>góc ADF=góc EDC

=>góc ADF+góc ADE=180 độ

=>F,D,E thẳng hàng

b) Ta có: ΔBAD=ΔBED(cmt)

nên DA=DE(hai cạnh tương ứng)

Ta có: BA=BE(gt)

nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DA=DE(cmt)

nên D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE(Đpcm)

Sửa đề: BA=BE

a) Xét ΔBAD và ΔBED có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔBAD=ΔBED(c-g-c)

Suy ra: \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

hay DE⊥BC(đpcm)

a: Xét ΔABD và ΔAED có 

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED