K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

Ta có : A = x2 - x + 2

=> \(A=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(\Rightarrow A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Mà : \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

Nên : \(A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Vậy Amin = \(\frac{3}{4}\) , dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\)

13 tháng 7 2017

A = x2 - x + 2 = x2 - 2.x.1 + 1+ 1 = ( x+1)2 + 1

Ta có: ( x+1)2 \(\ge\)0 ( với mọi x)

 => ( x+1)2 + 1 \(\ge\)1  khi với mọi x)

Dấu "=" xảy ra khi ( x+1)2 = 0

 => x + 1 = 0 -> x= -1

Vậy GTNN của biểu thức A = x2 - x + 2 là 1 khi x = -1

1 tháng 11 2020

a) Ta có A = x2 - 2x - 1 = (x2 - 2x + 1) - 2 = (x - 1)2 - 2 \(\ge\) -2 

Dấu "=" xảy ra <=> x - 1 = 0 => x = 1

Vậy Min A = -2 <=> x = 1 

b) Ta có B = 4x2 + 4x + 8 = (4x2 + 4x + 1) + 7 = (2x + 1)2 + 7 \(\ge\)7

Dấu |"=" xảy ra <=> 2x + 1 = 0 => x = -1/2

Vậy Min B = 7 <=> x = -1/2

c) Ta có C = 3x - x2 + 2

                 = -(x2 - 3x - 2)

                = -(x2 - 3x + 9/4 - 9/4 - 2)

                = -[(x - 3/2)2 - 17/4)

                 = -(x - 3/2)2 + 17/4 \(\le\frac{17}{4}\)

Dấu "=" xảy ra <=> x - 3/2 = 0 => x = 3/2

Vậy Max C = 17/4 <=> x = 3/2

d) Ta có D = -x2 - 5x = -(x2 + 5x) = -(x2 + 5x + 25/4 - 25/4) = -(x + 5/2)2 + 25/4 \(\ge\frac{25}{4}\)

Dấu "=" xảy ra <=> x + 5/2 = 0 => x = -5/2

Vậy Max D = 25/4 <=> x = -5/2

e) Ta có E = x2 - 4xy + 5y2 + 10x - 22y + 28

                  = (x2 - 4xy + 4y2) + 10x - 20y + y2 - 2y + 28

                 = (x - 2y)2 + 10(x - 2y) + 25 + (y2 - 2y + 1) + 2

                 = (x - 2y + 5) + (y - 1)2 + 2 \(\ge\)2

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy Min E = 2 <=> x = -3 ; y = 1

DD
2 tháng 11 2020

\(A=x^2-2x-1=x^2-2x+1-2=\left(x-1\right)^2-2\ge-2\)

Dấu \(=\)xảy ra khi \(x=1\). Vậy GTNN của \(A\)là \(-2\).

\(B=4x^2+4x+8=4x^2+4x+1+7=\left(2x+1\right)^2+7\ge7\)

Dấu \(=\)xảy ra khi \(x=\frac{-1}{2}\). Vậy GTNN của \(B\)là \(7\).

\(C=-x^2+3x+2=-x^2+2.\frac{3}{2}x-\left(\frac{3}{2}\right)^2+\frac{17}{4}=-\left(x-\frac{3}{2}\right)^2+\frac{17}{4}\le\frac{17}{4}\)

Dấu \(=\) xảy ra khi \(x=\frac{3}{2}\). Vậy GTLN của \(C\)là \(\frac{17}{4}\).

\(D=-x^2-5x=-x^2-2.\frac{5}{2}x-\left(\frac{5}{2}\right)^2+\frac{25}{4}=-\left(x+\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

Dấu \(=\)xảy ra khi \(x=\frac{-5}{2}\). Vậy GTLN của \(D\) là \(\frac{25}{4}\).

\(E=x^2-4xy+5y^2+10x-22y+28\)

\(=x^2+4y^2+25-4xy+10x-20y+y^2-2y+1+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu \(=\)xảy ra khi \(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\). Vậy GTNN của \(E\) là \(2\).

21 tháng 9 2016

\(B=3x^2-6x+1=3x^2-6x+3-2=3\times\left(x^2-2x+1\right)-2=3\times\left(x-1\right)^2-2\)

\(3\times\left(x-1\right)^2\ge0\Rightarrow3\times\left(x-1\right)^2-2\ge-2\)

\(MinB=-2\Leftrightarrow x=1\)

\(A=-5x^2-4x+13=-5\times\left(x^2+\frac{4}{5}x-\frac{13}{5}\right)=-5\times\left(x^2+2\times x\times\frac{2}{5}+\frac{4}{25}-\frac{4}{25}-\frac{13}{5}\right)=-5\times\left[\left(x+\frac{2}{5}\right)^2-\frac{69}{25}\right]\)

\(\left(x+\frac{2}{5}\right)^2\ge0\Rightarrow\left(x+\frac{2}{5}\right)^2-\frac{69}{25}\ge-\frac{69}{25}\Rightarrow-5\times\left[\left(x+\frac{2}{5}\right)^2-\frac{69}{25}\right]\le\frac{69}{5}\)

\(M\text{ax}A=\frac{69}{5}\Leftrightarrow x=-\frac{2}{5}\)

\(B=-x^2-10x+8=-x^2-10x-25+33=33-\left(x+5\right)^2\)

\(\left(x+5\right)^2\ge0\Rightarrow33-\left(x+5\right)^2\le33\)

\(M\text{ax}B=33\Leftrightarrow x=-5\)

22 tháng 9 2016

Thanks