K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Ta có: \(\left( C \right):{\left( {x + 6} \right)^2} + {\left( {y - 12} \right)^2} = 81 \Leftrightarrow {\left( {x - \left( { - 6} \right)} \right)^2} + {\left( {y - 12} \right)^2} = {9^2}\)

=> \(I\left( { - 6;12} \right)\) .

Chọn B

16 tháng 5 2021

\(PT:\)

\(\left(x-2\right)^2+\left(y+7\right)=3^2=9\)

=>  B

16 tháng 5 2021

Đáp án B

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Phương trình đường tròn \({\left( {x - 2} \right)^2} + {\left( {y - 7} \right)^2} = 64\) có dạng \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\) nên đường tròn có tâm là \(I(2;7)\) và bán kinh \(R = \sqrt {64}  = 8\)

b) Phương trình đường tròn \({\left( {x + 3} \right)^2} + {\left( {y + 2} \right)^2} = 8\) có dạng \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\) nên đường tròn có tâm là \(I( - 3; - 2)\) và bán kinh \(R = \sqrt 8  = 2\sqrt 2 \)

c) Phương trình đường tròn \({x^2} + {y^2} - 4x - 6y - 12 = 0\) có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) nên đường tròn có tâm là \(I(2;3)\) và bán kinh \(R = \sqrt {{2^2} + {3^2} + 12}  = 5\)

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học

Vậy ta được \(M\left(-1;1\right)\)

30 tháng 5 2017

a) \(MA^2+MB^2=MC^2\)

\(\Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {x + 3} \right)^2} + {\left( {y - 1} \right)^2} = {\left( {x - 4} \right)^2} + {\left( {y + 2} \right)^2}\)

\(\Leftrightarrow {x^2} + {y^2} + 12x - 10y - 5 = 0\)

\(\Leftrightarrow {\left( {x + 6} \right)^2} + {\left( {y - 5} \right)^2} = 66\)

Vậy tập hợp các điểm M là một đường tròn.

b) Tâm là điểm (-6 ; 5) bán kính bằng \(\sqrt{66}\)

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học

11 tháng 4 2016

Tọa độ điểm A, B là nghiệm của hệ phương trình :

\(\begin{cases}\left(x+1\right)^2+\left(y-2\right)^2=13\\x-5y-2=0\end{cases}\)   \(\Leftrightarrow\begin{cases}26y^2+26y=0\\x=5y+2\end{cases}\)

                                            \(\Leftrightarrow\begin{cases}\begin{cases}x=2\\y=0\end{cases}\\\begin{cases}x=-3\\y=-1\end{cases}\end{cases}\)
\(\Rightarrow A\left(2;0\right);B\left(-3;-1\right)\) hoặc \(A\left(-3;-1\right);B\left(2;0\right)\)

Vì tam giác ABC vuông tại B và nội tiếp đường tròn (C) nên AC là đường kính của đường tròn (C). Hay tâm \(I\left(-1;2\right)\) là trung điểm của AC

Khi đó : \(A\left(2;0\right);B\left(-3;-1\right)\Rightarrow C\left(-4;4\right)\)

            \(A\left(-3;-1\right);B\left(2;0\right)\Rightarrow C\left(1;5\right)\)

Vậy \(C\left(-4;4\right)\) hoặc \(C\left(1;5\right)\)

Chọn A

19 tháng 5 2017

\(\left(x,y\right)\) là tâm đường tròn ngoại tiếp tam giác ABC

\(\Leftrightarrow\left\{{}\begin{matrix}IA=IB\\IA=IC\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}IA^2=IB^2\\IA^2=IC^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2+\left(y-2\right)^2=\left(x-2\right)^2+y^2\\\left(x+1\right)^2+\left(y-2\right)^2=\left(x+3\right)^2+\left(y-1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6x-4y=-1\\4x+2y=-5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{11}{14}\\y=-\dfrac{13}{14}\end{matrix}\right.\)

Vậy \(I\left(-\dfrac{11}{14};-\dfrac{13}{14}\right)\)

NV
29 tháng 9 2020

Casio:

a/ \(\Leftrightarrow\left(x^2-5x-2\right)\left(x^2-2x-2\right)=0\)

b/ \(\Leftrightarrow2\left(2x^2+3x+3\right)^2+6\left(x+\frac{2}{3}\right)^2+\frac{28}{3}=0\)

Vế trái luôn dương nên pt vô nghiệm

c/ Câu này đề sai, pt này ko thể tách ra được nên chắc chắn là ko giải được

d/ Câu này chắc đề cũng ko đúng: đặt \(2x-4=a\Rightarrow2x=a+4\)

\(\Rightarrow\left(a+5\right)\left(a+1\right)\left(a+2\right)\left(a+10\right)=100\)

\(\Leftrightarrow a\left(a^3+18a^2+97a+180\right)=0\)

Dù pt có nghiệm \(a=0\) nhưng pt bậc 3 đằng sau lại ko thể giải

e/ Câu này giống câu trên

\(\Leftrightarrow x\left(16x^3+16x^2-93x+12\right)=0\)

Pt bậc 3 phía sau ko giải được