![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
Phương trình hoành độ giao điểm của (P) và (d):
\(x^2-4x=-x-2\)
⇔ \(x^2-3x+2=0\)
⇔ \(\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Với x= 2 ⇒ y=-2 -2 = -4
Với x= 1 ⇒ y = -1 -2 = -3
Vậy chọn B: M( 1; -3) và N(2;-4)
Câu 2:
Vì (d) tiếp xúc với (P)
nên Δ = 0 ⇒ phương trình có một nghiệm kép
Vậy chọn D: y= -x +1
Câu 3:
(P) : y =\(x^2+4x+4\)
Để (P) có điểm chung với trục hoành ⇔ y =0
Vậy chọn B : 1
Câu 4:
Phương trình hoành độ giao điểm của hai parabol:
\(x^2-4=14-x^2\)
⇔ \(2x^2-18=0\)
⇔\(\left[{}\begin{matrix}x=3\Rightarrow y=14-3^2=5\\x=-3\Rightarrow y=14-\left(-3\right)^2=5\end{matrix}\right.\)
Vậy chọn C : (3;5) và (-3;5)
Câu 5: (P) : y= \(x^2-2x+m-1\)
Để (P) không cắt Ox
⇔ Δ < 0
⇔ \(b^2-4ac< 0\)
⇔ \(\left(-2\right)^2-4\left(m-1\right)< 0\)
⇔ 4 - 4m +4 < 0
⇔ -4m < -8
⇔ m > 2
Vậy chọn B : m> 2
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Mệnh đề đúng
\(\Rightarrow \overline P:\)\(\sqrt{3}+\sqrt{2}\ne\frac{1}{\sqrt{3}-\sqrt{2}}\)
b, Mệnh đề sai
\(\Rightarrow \overline P:\) \(\left(\sqrt{2}-\sqrt{18}\right)^2\le8\)
c, Mệnh đề đúng
\(\Rightarrow \overline P:\) \(\left(\sqrt{3}+\sqrt{12}\right)^2\) không là một số hữu tỉ
d, Mệnh đề đúng
\(\Rightarrow \overline P:\) x = 2 không là nghiệm của PT \(\frac{x^2-4}{x-1}=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Áp dụng BĐT Bunhiacopski
P = \(6\sqrt{x-1}+8\sqrt{3-x}\le\sqrt{\left(6^2+8^2\right)\left(x-1+3-x\right)}=10\sqrt{2}\)
Vậy Min P = \(10\sqrt{2}\) khi x = 43/25
2) a) \(\Rightarrow A-5=y-2x=4y.\dfrac{1}{4}+\left(-6x\right).\dfrac{1}{3}\)
Áp dụng BĐT bunhiacopski
\(\Rightarrow\left(A-5\right)^2=\left(4y.\dfrac{1}{4}+\left(-6x\right).\dfrac{1}{3}\right)^2\) \(\le\left(16y^2+36x^2\right)\left(\dfrac{1}{16}+\dfrac{1}{9}\right)=\dfrac{25}{16}\)
\(\Rightarrow-\dfrac{5}{4}\le A-5\le\dfrac{5}{4}\Rightarrow\dfrac{15}{4}\le A\le\dfrac{25}{4}\)
...........
b) tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
vì có ít time nên mk hướng dẩn thôi nha .
câu 1: vì parabol có đỉnh là \(I\left(-1;-4\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{-b}{2a}=-1\\16a-4b+c=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=2a\\c=-4-8a\end{matrix}\right.\) (1)
và nó cắt trục tung tại điểm có tung độ là \(1\) \(\Rightarrow c=1\) (2)
từ (1) và (2) ta có hệ : \(\Rightarrow a;b;c\)
câu 2 : vì parabol có đỉnh là \(I\left(-1;-4\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{-b}{2a}=-1\\16a-4b+c=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=2a\\c=-4-8a\end{matrix}\right.\)
thế vào \(M\) đưa về dạng bình phương 1 số là ô kê .
câu 3 : tương tự câu 2 thôi nha
từ dữ liệu đề bài \(\Rightarrow\left\{{}\begin{matrix}4a-2b+c=0\\a+b+a=0\end{matrix}\right.\) \(\Rightarrow\) ........................
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
Theo đề, ta có hệ:
\(\left\{{}\begin{matrix}\dfrac{-b}{2a}=2\\-\dfrac{b^2-4ac}{4a}=1\\a+b+c=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\b^2-4ac=-4a\\a+b+c=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\\left(-2a\right)^2-4ac=-4a\\a+b+c=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\4a^2-4ac=-4a\\a+b+c=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\a-c=-1\\a+b+c=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\c=a+1\\a-2a+a+1=-1\end{matrix}\right.\)
=>1=-1(loại)