K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2019

Đáp án D

Chú ý 4 cạnh khác nhau

Có  C 6 4  cách chọn 4 màu khác nhau. Từ mỗi bộ 4 màu thì có 4! = 24 cách tô màu khác nhau.

Có  C 6 3  cách chọn 3 màu khác nhau. Từ mỗi bộ 3 màu, có 4.3 = 12 cách tô.

Có  C 6 2  cách chọn 2 màu khác nhau khi đó có: 2.1 = 2 cách tô.

Tổng cộng:  24 . C 6 4 + 4 . 3 C 6 3 + 2 . C 6 2 = 630 cách.

9 tháng 9 2017

Chọn D

+ Tô màu ô vuông số 2: có C 3 2 cách chọn 2 trong 3 màu, có C 4 2 cách tô 2 màu đó lên 4 cạnh. Vậy có  C 3 2 C 4 2 = 18cách.

+ Tô màu ô vuông số 1,5,3: có C 2 1 cách chọn màu còn lại, có C 3 2 cách tô màu còn lại lên 3 cạnh còn lại của 1 hình vuông. Vậy có ( C 2 1 C 3 2 ) 3 = 6 3 cách

+ Tô màu ô vuông số 4,6: Mỗi 1 hình vuông có 2 cách tô màu. Vậy có 2 2 = 4cách.

Vậy có 18. 6 3 .4 = 15552 cách thỏa mãn.

Trả lời :

Có 520 số chẵn gồm bốn chữ số đôi một khác nhau được lập từ các số 0,1,2,4,5,6,7.

# Hok tốt !

10 tháng 2 2021

xin fb chj ;-;

9 tháng 4 2017

a) Hình vuông thứ nhất có cạnh bằng nên u1 = ()2 = .

Hình vuông thứ hai có cạnh bằng nên u2 = ()2 = .

Hình vuông thứ ba có cạnh bằng nên u3 = ()2 = .

Tương tự, ta có un =

b) Dãy số (un) là một cặp số nhân lùi vô hạn với u1 = và q = . Do đó

lim Sn = .

23 tháng 1 2022

:(

6 tháng 8 2020

2, sin4x+cos5=0 <=> cos5x=cos\(\left(\frac{\pi}{2}+4x\right)\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}\left(k\inℤ\right)}\)

ta có \(2\pi>0\Leftrightarrow k< >\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(\frac{\pi}{2}\)khi k=0

\(-\frac{\pi}{18}+\frac{k2\pi}{9}>0\Leftrightarrow k>\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(-\frac{\pi}{18}-\frac{k2\pi}{9}\)là \(\frac{\pi}{6}\)khi k=1

vậy nghiệm dương nhỏ nhất của phương trình là \(\frac{\pi}{6}\)

\(\frac{\pi}{2}+k2\pi< 0\Leftrightarrow k< -\frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(\frac{\pi}{2}+k2\pi\)là \(-\frac{3\pi}{2}\)khi k=-1

\(-\frac{\pi}{18}+\frac{k2\pi}{9}< 0\Leftrightarrow k< \frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(-\frac{\pi}{18}+\frac{k2\pi}{9}\)là \(-\frac{\pi}{18}\)khi k=0

vậy nghiệm âm lớn nhất của phương trình là \(-\frac{\pi}{18}\)

Bài toán thực tế để cho học sinh biết: Trong một cuộc thi Toán của một khối học sinh, người ta xếp n học sinh (n > 20) thành một hàng dọc theo đúng thứ tự từ trái sang phải theo số báo danh tăng dần.Biết rằng:Số báo danh của mỗi học sinh tạo thành một cấp số cộng (CSC) với số hạng đầu a₁ và công sai d > 0.Tổng số báo danh của 5 học sinh đứng giữa hàng là gấp 5 lần số báo danh...
Đọc tiếp

Bài toán thực tế để cho học sinh biết: Trong một cuộc thi Toán của một khối học sinh, người ta xếp n học sinh (n > 20) thành một hàng dọc theo đúng thứ tự từ trái sang phải theo số báo danh tăng dần.
Biết rằng:

  1. Số báo danh của mỗi học sinh tạo thành một cấp số cộng (CSC) với số hạng đầu a₁công sai d > 0.
  2. Tổng số báo danh của 5 học sinh đứng giữa hàng là gấp 5 lần số báo danh của học sinh đứng thứ 8 từ trái sang.
  3. Tổng số báo danh của tất cả học sinh có vị trí chẵn (tính từ trái sang) đúng bằng 3 lần tổng số báo danh của các học sinh có vị trí lẻ.
  4. Nếu cộng tất cả số báo danh ở vị trí là bội của 3 rồi trừ đi tổng các số báo danh ở vị trí là bội của 4 thì được 2025.
  5. Biết rằng hiệu giữa số báo danh của học sinh cuối cùngsố báo danh của học sinh thứ 11 chính là 11 lần công sai.

Hãy xác định số lượng học sinh n, cũng như các giá trị a₁d thỏa mãn toàn bộ các điều kiện trên.

1
19 giờ trước (23:06)

*Giải bài toán*

Gọi số hạng đầu là \(a_1\) và công sai là \(d\). Số hạng tổng quát là \(a_n = a_1 + (n-1)d\).


*Điều kiện 1*

Tổng số báo danh của 5 học sinh đứng giữa hàng là gấp 5 lần số báo danh của học sinh đứng thứ 8:

\[a_6 + a_7 + a_8 + a_9 + a_{10} = 5a_8\]

\[5a_1 + 35d = 5(a_1 + 7d)\]

Điều này luôn đúng.


*Điều kiện 2*

Tổng số báo danh của học sinh ở vị trí chẵn bằng 3 lần tổng số báo danh của học sinh ở vị trí lẻ:

\[S_{chẵn} = 3S_{lẻ}\]

Với \(n = 22\), ta có:

\[S_{chẵn} = a_2 + a_4 + ... + a_{22}\]

\[S_{lẻ} = a_1 + a_3 + ... + a_{21}\]

\[11a_1 + 110d = 3(11a_1 + 55d)\]

\[11a_1 + 110d = 33a_1 + 165d\]

\[22a_1 = -55d\]

\[2a_1 = -5d\]

*Điều kiện 3*

\[S_3 - S_4 = 2025\]

Với \(n = 22\), \(k = 7\), \(l = 5\):

\[S_3 = 7a_1 + 77d\]

\[S_4 = 5a_1 + 55d\]

\[2a_1 + 22d = 2025\]

*Điều kiện 4*

\[a_{22} - a_{11} = 11d\]

\[11d = 11d\]

\[n = 22\]

*Tìm \(a_1\) và \(d\)*

Từ \(2a_1 = -5d\) và \(2a_1 + 22d = 2025\):

\[2a_1 = -5d\]

\[-5d + 22d = 2025\]

\[17d = 2025\]

\[d = \frac{2025}{17} = 119\]

\[2a_1 = -5 \cdot 119\]

\[a_1 = -\frac{595}{2}\]

*Kết quả*

\[n = 22\]

\[a_1 = -\frac{595}{2}\]

\[d = 119\]