Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo mình thì thế này :
\(x\left(x+4\right)\left(x+5\right)\left(x+9\right)+91\)
= \(\left[x.\left(x+9\right)\right]\left[\left(x+4\right)\left(x+5\right)\right]+91\)
= \(\left(x^2+9x\right).\left(x^2+9x\right)+91\)
Đặt \(t=\left(x^2+9x\right)\)
=> \(t^2+91\)
=> \(\left(x^2+9x\right)^2+91\)
=> \(x^4+19x^2+81x^2+91\)
Ta có\(\frac{x+3}{97}+\frac{x+5}{95}+\frac{x+9}{91}=\frac{x+91}{9}+\frac{x+92}{8}+\frac{x+61}{39}\)
<=> \(\left(\frac{x+3}{97}+1\right)+\left(\frac{x+5}{95}+1\right)+\left(\frac{x+9}{91}+1\right)=\left(\frac{x+91}{9}+1\right)+\left(\frac{x+92}{8}+1\right)+\left(\frac{x+61}{39}+1\right)\)
<=>\(\frac{x+100}{97}+\frac{x+100}{95}+\frac{x+100}{91}=\frac{x+100}{9}+\frac{x+100}{8}+\frac{x+100}{39}\)
<=>\(\frac{x+100}{97}+\frac{x+100}{95}+\frac{x+100}{91}-\frac{x+100}{9}-\frac{x+100}{8}-\frac{x+100}{39}=0\)
<=> \(\left(x+100\right)\left(\frac{1}{97}+\frac{1}{95}+\frac{1}{91}-\frac{1}{9}-\frac{1}{8}-\frac{1}{39}\right)=0\)
Do \(\frac{1}{97}+\frac{1}{95}+\frac{1}{91}-\frac{1}{9}-\frac{1}{8}-\frac{1}{39}\ne0\)
Nên x+100=0 => x=-100
\(\frac{x+1}{99}+\frac{x+3}{97}+\frac{x+5}{95}=\frac{x+7}{93}+\frac{x+9}{91}+\frac{x+11}{89}\)
\(\Rightarrow\frac{x+1}{99}+1+\frac{x+3}{97}+1+\frac{x+5}{95}+1\)\(=\frac{x+7}{93}+1+\frac{x+9}{91}+1+\frac{x+11}{89}+1\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{97}+\frac{x+100}{95}\)\(=\frac{x+100}{93}+\frac{x+100}{91}+\frac{x+100}{89}\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{97}+\frac{x+100}{95}\)\(-\frac{x+100}{93}-\frac{x+100}{91}-\frac{x+100}{89}=0\)
\(\Rightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}-\frac{1}{93}-\frac{1}{91}-\frac{1}{89}\right)=0\)
Mà \(\left(\frac{1}{99}< \frac{1}{97}< \frac{1}{95}< \frac{1}{93}< \frac{1}{91}< \frac{1}{89}\right)\)nên \(\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}-\frac{1}{93}-\frac{1}{91}-\frac{1}{89}\right)< 0\)
\(\Rightarrow x+100=0\Leftrightarrow x=-100\)
Vậy x = -100
\(\dfrac{x+3}{97}+\dfrac{x+5}{95}+\dfrac{x+9}{91}=\dfrac{x+91}{9}+\dfrac{x+92}{8}+\dfrac{x+61}{39}\)
=> \(\dfrac{x+3}{97}+1+\dfrac{x+5}{95}+1+\dfrac{x+9}{91}+1=\dfrac{x+91}{9}+1+\dfrac{x+92}{8}+1+\dfrac{x+61}{39}+1\)
=> \(\dfrac{x+100}{97}+\dfrac{x+100}{95}+\dfrac{x+100}{91}=\dfrac{x+100}{9}+\dfrac{x+100}{8}+\dfrac{x+100}{39}\)
=> \(\dfrac{x+100}{97}+\dfrac{x+100}{95}+\dfrac{x+100}{91}-\dfrac{x+100}{9}-\dfrac{x+100}{8}-\dfrac{x+100}{39}=0\)
=> \(\left(x+100\right).\left(\dfrac{1}{97}+\dfrac{1}{95}+\dfrac{1}{91}-\dfrac{1}{9}-\dfrac{1}{8}-\dfrac{1}{39}\right)=0\)
=> x = - 100 (do \(\dfrac{1}{97}+\dfrac{1}{95}+\dfrac{1}{91}-\dfrac{1}{9}-\dfrac{1}{8}-\dfrac{1}{39}\ne0\)
Ta có: \(\dfrac{x+3}{97}+\dfrac{x+5}{95}+\dfrac{x+9}{91}=\dfrac{x+91}{9}+\dfrac{x+92}{8}+\dfrac{x+61}{39}\)
\(\Leftrightarrow\dfrac{x+3}{97}+1+\dfrac{x+5}{95}+1+\dfrac{x+9}{91}+1=\dfrac{x+91}{9}+1+\dfrac{x+92}{8}+1+\dfrac{x+61}{39}+1\)
\(\Leftrightarrow\dfrac{x+100}{97}+\dfrac{x+100}{95}+\dfrac{x+100}{91}=\dfrac{x+100}{9}+\dfrac{x+100}{8}+\dfrac{x+100}{39}\)
\(\Leftrightarrow\dfrac{x+100}{97}+\dfrac{x+100}{95}+\dfrac{x+100}{91}-\dfrac{x+100}{9}-\dfrac{x+100}{8}-\dfrac{x+100}{39}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{97}+\dfrac{1}{95}+\dfrac{1}{91}-\dfrac{1}{9}-\dfrac{1}{8}-\dfrac{1}{39}\right)=0\)
mà \(\dfrac{1}{97}+\dfrac{1}{95}+\dfrac{1}{91}-\dfrac{1}{9}-\dfrac{1}{8}-\dfrac{1}{39}\ne0\)
nên x+100=0
hay x=-100
Vậy: S={-100}
\(\frac{x+2}{2002}+\frac{x+5}{1999}+\frac{x+201}{1803}=-3\)
\(\Rightarrow\frac{x+2}{2002}+1+\frac{x+5}{1999}+1+\frac{x+201}{1803}+1=0\)
\(\Rightarrow\frac{x+2004}{2002}+\frac{x+2004}{1999}+\frac{x+2004}{1803}=0\)
\(\Rightarrow\left(x+2004\right)\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\right)=0\)
Dễ thấy \(\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\right)>0\)nên x + 2004 = 0
Vậy x = -2004
\(\frac{x+2}{2002}+\frac{x+5}{1999}+\frac{x+201}{1803}=-3\)
\(\Leftrightarrow\frac{x+2}{2002}+1+\frac{x+5}{1999}+1+\frac{x+201}{1803}+1=-3+1+1+1\)
\(\Leftrightarrow\frac{x+2004}{2002}+\frac{x+2004}{1999}+\frac{x+2004}{1803}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\right)=0\)
\(\Leftrightarrow x+2004=0\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\ne0\right)\)
<=> x=-2004
a,\(\frac{x+2}{2002}+\frac{x+5}{1999}+\frac{x+201}{1803}=-3\)
\(< =>\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+5}{1999}+1\right)+\left(\frac{x+201}{1803}+1\right)=0\)
\(< =>\frac{x+2004}{2002}+\frac{x+2004}{1999}+\frac{x+2004}{1803}=0\)
\(< =>\left(x+2004\right).\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\right)=0\)
Do \(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\ne0\)
\(=>x+2004=0\)
\(=>x=-2004\)
\(\dfrac{9}{\sqrt{x-19}}+\dfrac{16}{\sqrt{y-5}}+\dfrac{25}{\sqrt{z-91}}=24-\sqrt{x-19}-\sqrt{y-5}-\sqrt{z-91}\\ \Leftrightarrow\left(\dfrac{9}{\sqrt{x-19}}+\sqrt{x-19}\right)+\left(\dfrac{16}{\sqrt{y-5}}+\sqrt{y-5}\right)+\left(\dfrac{25}{\sqrt{z-91}}+\sqrt{z-91}\right)=24\)
Áp dụng BDT: Cô-si:
\(\Rightarrow\left(\dfrac{9}{\sqrt{x-19}}+\sqrt{x-19}\right)+\left(\dfrac{16}{\sqrt{y-5}}+\sqrt{y-5}\right)+\left(\dfrac{25}{\sqrt{z-91}}+\sqrt{z-91}\right)\ge2\sqrt{\dfrac{9}{\sqrt{x-19}}\cdot\sqrt{x-19}}+2\sqrt{\dfrac{16}{\sqrt{y-5}}\cdot\sqrt{y-5}}+2\sqrt{\dfrac{25}{\sqrt{z-91}}\cdot\sqrt{z-91}}\\ =2\cdot3+2\cdot4+2\cdot5=24\)Dấu "=" xảy ra khi:\(\left\{{}\begin{matrix}\dfrac{9}{\sqrt{x-19}}=\sqrt{x-19}\\\dfrac{16}{\sqrt{y-5}}=\sqrt{y-5}\\\dfrac{25}{\sqrt{z-91}}=\sqrt{z-91}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-19=9\\y-5=16\\z-91=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=28\\y=21\\z=116\end{matrix}\right.\)
Vậy các số \(\left\{x;y;z\right\}=\left\{28;21;116\right\}\)
a) Đặt x -3 = a
<=> a(a+2)(a+8)(a+10) - 297=0
<=> \(\left[a\left(a+10\right)\right]\left[\left(a+2\right)\left(a+8\right)\right]\)-297=0
<=> \(\left(a^2+10a\right)\left(a^2+10a+16\right)-297=0\)
Đặt \(a^2+10a=b\)
\(b^2+16b-297=0\)
\(\Rightarrow\left[{}\begin{matrix}b=11\\b=-27\end{matrix}\right.\)\(b=11\Rightarrow\left[{}\begin{matrix}a=1\\a=-11\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=4\\x=-8\end{matrix}\right.\)
b= -27 \(\Rightarrow a=\varnothing\Rightarrow x=\varnothing\)
b) bấm máy ra nhân tử chung :D
c)
\(\Leftrightarrow\left(\frac{1927-X}{91}+1\right)+\left(\frac{1925-x}{93}+1\right)+...=0\)
\(\Leftrightarrow\frac{2018-x}{91}+\frac{2018-x}{93}+\frac{2018-x}{95}+\frac{2018-x}{97}=0\)
\(\Leftrightarrow\left(2018-x\right)\left(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\right)=0\)
<=> x = 2018
d) \(\Leftrightarrow\left(\frac{x-85}{15}-1\right)+\left(\frac{x-74}{13}-2\right)+\left(\frac{x-67}{11}-3\right)+\left(\frac{x-64}{9}-3\right)=0\)
giống câu c
=x.<4+5+9>+91
=x.<18+91>
=x.109