K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2016

\(\left(x-1\right)\left(x+1\right)\left(x+2\right)=\left(x^2-1\right)\left(x+2\right)\)

\(=x^3-x+2x^2-2\)

\(\left(x-1\right)\left(x+1\right)\left(x+2\right)=0\)

\(=>\left(x^2-1\right)\left(x+2\right)=0\)

\(=>\orbr{\begin{cases}x^2-1=0\\x+2=0\end{cases}}\)

\(=>\orbr{\begin{cases}x=-1;1\\x=-2\end{cases}}\)

T nha các bạn 

4 tháng 6 2018

Ta có : 1/x - 1/(x+1) = 1/x(x+1)

<=> pcm \(\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)

<=> pcm \(\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)

<=> pcm 1/x(x+1) = 1/x(x+1)

Đây là điều luôn đúng nên ta có điều phải chứng minh

Chú ý : Chữ pcm là phải chứng minh

4 tháng 6 2018

Ta có : \(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x+5}\)

\(=\frac{1}{x\left(x+1\right)}+\frac{1}{x^2+x+2x+2}+\frac{1}{x^2+2x+3x+6}+\frac{1}{x^2+3x+4x+12}+\frac{1}{x^2+4x+5x+20}+\frac{1}{x+5}\)

\(=\frac{1}{x\left(x+1\right)}+\frac{1}{x\left(x+1\right)+2\left(x+1\right)}+\frac{1}{x\left(x+2\right)+3\left(x+2\right)}+\frac{1}{x\left(x+3\right)+4\left(x+3\right)}\)

\(+\frac{1}{x\left(x+4\right)+5\left(x+4\right)}+\frac{1}{x+5}\)

\(=\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)

Áp dụng chứng minh trên ta có :

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)

=1/x

a: \(=\dfrac{6}{x+1}+\dfrac{4}{x-1}-\dfrac{10}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{6x-6+4x+4-10}{\left(x-1\right)\left(x+1\right)}=\dfrac{10x-12}{\left(x-1\right)\left(x+1\right)}\)

b: \(=\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}+\dfrac{6}{x}=\dfrac{1}{x}+\dfrac{6}{x}=\dfrac{7}{x}\)

Bài 4:

1: \(\left(x-1\right)\left(x^2+x+1\right)-x^3-6x=11\)

=>\(x^3-1-x^3-6x=11\)

=>-6x-1=11

=>-6x=11+1=12

=>\(x=\dfrac{12}{-6}=-2\)

2: \(16x^2-\left(3x-4\right)^2=0\)

=>\(\left(4x\right)^2-\left(3x-4\right)^2=0\)

=>\(\left(4x-3x+4\right)\left(4x+3x-4\right)=0\)

=>(x+4)(7x-4)=0

=>\(\left[{}\begin{matrix}x+4=0\\7x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{4}{7}\end{matrix}\right.\)

3: \(x^3-x^2-3x+3=0\)

=>\(\left(x^3-x^2\right)-\left(3x-3\right)=0\)

=>\(x^2\left(x-1\right)-3\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(x^2-3\right)=0\)

=>\(\left[{}\begin{matrix}x-1=0\\x^2-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)

4: \(\dfrac{x-1}{x+2}=\dfrac{x+2}{x+1}\)(ĐKXĐ: \(x\notin\left\{-2;-1\right\}\))

=>\(\left(x+2\right)^2=\left(x-1\right)\left(x+1\right)\)

=>\(x^2+4x+4=x^2-1\)

=>4x+4=-1

=>4x=-5

=>\(x=-\dfrac{5}{4}\left(nhận\right)\)

5: ĐKXĐ: \(x\notin\left\{0;-1\right\}\)

\(\dfrac{1}{x}+\dfrac{2}{x+1}=0\)

=>\(\dfrac{x+1+2x}{x\left(x+1\right)}=0\)

=>3x+1=0

=>3x=-1

=>\(x=-\dfrac{1}{3}\left(nhận\right)\)

6: ĐKXĐ: \(x\notin\left\{0;3\right\}\)

\(\dfrac{9-x^2}{x}:\left(x-3\right)=1\)

=>\(\dfrac{-\left(x^2-9\right)}{x\left(x-3\right)}=1\)

=>\(\dfrac{-\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}=1\)

=>\(\dfrac{-x-3}{x}=1\)

=>-x-3=x

=>-2x=3

=>\(x=-\dfrac{3}{2}\left(nhận\right)\)

4 tháng 12 2021

Tính:

a, \(\dfrac{x-1}{x+2}+\dfrac{x+5}{x+2}=\dfrac{x-1+x+5}{x-2}=\dfrac{2x+4}{x-2}\) = \(\dfrac{2\left(x+2\right)}{x-2}\)

b, \(\dfrac{1}{x\left(x-1\right)}-\dfrac{2-x}{x-1}=\dfrac{1}{x\left(x-1\right)}-\dfrac{x\left(2-x\right)}{x\left(x-1\right)}=\dfrac{1-2x+x^2}{x\left(x-1\right)}=\dfrac{x^2-2x+1}{x\left(x-1\right)}=\dfrac{\left(x-1\right)^2}{x\left(x-1\right)}=\dfrac{x-1}{x}\)

Đề sai rồi bạn

13 tháng 7 2016

a) (x - 1) (x2 + x + 1) - (x + 1) (x2 - x + 1) + 2(x - 1) (x + 1) - 2(x + 2)2

= x3 - 1 -  x3 - 1 + 2(x2 - 1) - 2(x2 + 4x + 4)

= -2 + 2x2 -  2 - 2x2 - 8x - 8

= -12  

13 tháng 7 2016

cam on nha 

 

DD
16 tháng 12 2021

\(S=\frac{1}{x\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}+...+\frac{1}{\left(x+8\right)\left(x+9\right)\left(x+10\right)}\)

\(=\frac{1}{2}\left[\frac{2}{x\left(x+1\right)\left(x+2\right)}+\frac{2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}+...+\frac{2}{\left(x+8\right)\left(x+9\right)\left(x+10\right)}\right]\)

\(=\frac{1}{2}\left[\frac{x+2-x}{x\left(x+1\right)\left(x+2\right)}+\frac{\left(x+3\right)-\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}+...+\frac{\left(x+10\right)-\left(x+8\right)}{\left(x+8\right)\left(x+9\right)\left(x+10\right)}\right]\)

\(=\frac{1}{2}\left[\frac{1}{x\left(x+1\right)}-\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+8\right)\left(x+9\right)}-\frac{1}{\left(x+9\right)\left(x+10\right)}\right]\)

\(=\frac{1}{2}\left[\frac{1}{x\left(x+1\right)}-\frac{1}{\left(x+9\right)\left(x+10\right)}\right]\)