\(\sqrt{33+8\sqrt{2}}-\sqrt{33-8\sqrt{2}}\)

\(\sqr...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

ko biết

21 tháng 8 2017

không bt làm thì đừng có mak trả lời

27 tháng 6 2019

Bạn chỉ cần tách chúng thành hằng đẳng thức sau đó áp dụng HĐT: \(\sqrt{A^2}=\left|A\right|\)

1, \(\sqrt{3+2\sqrt{2}}=\sqrt{2+2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\left|\sqrt{2}+1\right|=\sqrt{2}+1\)

2, \(\sqrt{4-2\sqrt{3}}=\sqrt{3-2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)3, \(\sqrt{5+2\sqrt{6}}=\sqrt{3+2\sqrt{3}.\sqrt{2}+2}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}=\left|\sqrt{3}+\sqrt{2}\right|=\sqrt{3}+\sqrt{2}\)4, \(\sqrt{7-2\sqrt{10}}=\sqrt{5-2\sqrt{5}.\sqrt{2}+2}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\left|\sqrt{5}-\sqrt{2}\right|=\sqrt{5}-\sqrt{2}\)5, \(\sqrt{15-6\sqrt{6}}=\sqrt{9-2.3.\sqrt{6}+6}=\sqrt{\left(3+\sqrt{6}\right)^2}=\left|3+\sqrt{6}\right|=3+\sqrt{6}\)Các câu còn lại tương tự nha!

27 tháng 6 2019

6, \(\sqrt{8+2\sqrt{15}}=\sqrt{5+2\sqrt{5}.\sqrt{3}+3}=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\left|\sqrt{5}+\sqrt{3}\right|=\sqrt{5}+\sqrt{3}\)7, \(\sqrt{10-2\sqrt{21}}=\sqrt{7-2\sqrt{7}.\sqrt{3}+3}=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\left|\sqrt{7}-\sqrt{3}\right|=\sqrt{7}-\sqrt{3}\)8, \(\sqrt{11+2\sqrt{18}}=\sqrt{9+2\sqrt{9}.\sqrt{2}+2}=\sqrt{\left(\sqrt{9}+\sqrt{2}\right)^2}=\left|3+\sqrt{2}\right|=3+\sqrt{2}\)9, \(\sqrt{14-2\sqrt{33}}=\sqrt{11-2\sqrt{11}.\sqrt{3}+3}=\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}=\left|\sqrt{11}-\sqrt{3}\right|=\sqrt{11}-\sqrt{3}\)Thử tự làm những câu còn lại rồi kiểm tra xem đúng hay sai nha!!!

Chúc bạn học tốt!!!

5 tháng 8 2018

\(\sqrt{10-4\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

 \(=\sqrt{2^2-2.2.\sqrt{6}+\left(\sqrt{6}\right)^2}+\sqrt{3^2-2.3.2\sqrt{6}+\left(2\sqrt{6}\right)^2}\)

\(=\sqrt{\left(2-\sqrt{6}\right)^2}+\sqrt{\left(3-2\sqrt{6}\right)^2}\)

\(=-\left(2-\sqrt{6}\right)-\left(3-2\sqrt{6}\right)\)

\(=-2+\sqrt{6}-3+2\sqrt{6}\)

\(=-5+3\sqrt{6}\)

5 tháng 8 2018

\(\sqrt{16-6\sqrt{7}}+\sqrt{32-8\sqrt{7}}\)

\(=\sqrt{3^2-2.3.\sqrt{7}+\left(\sqrt{7}\right)^2}+\sqrt{2^2-2.2.2\sqrt{7}+\left(2\sqrt{7}\right)^2}\)

\(=\sqrt{\left(3-\sqrt{7}\right)^2}+\sqrt{\left(2-2\sqrt{7}\right)^2}\)

\(=3-\sqrt{7}-\left(2-2\sqrt{7}\right)\)

\(=3-\sqrt{7}-2+2\sqrt{7}\)

\(=1+\sqrt{7}\)

9 tháng 10 2017

1) \(2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}\)

\(=2\sqrt{5}-\sqrt{5^2.5}-\sqrt{4^2.5}+\sqrt{11^2.5}\)

\(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}\)

\(=4\sqrt{5}\)

2) \(\sqrt{15-\sqrt{216}}+\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{15-\sqrt{6^2.6}}+\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{\left(\sqrt{6}\right)^2-6\sqrt{6}+3^2}+\sqrt{\left(2\sqrt{6}\right)^2-12\sqrt{6}+3^2}\)

\(=\sqrt{\left(\sqrt{6}-3\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)

\(=\left|\sqrt{6}-3\right|+\left|2\sqrt{6}-3\right|\)

\(=3-\sqrt{6}+2\sqrt{6}-3\)  ( vi \(\sqrt{6}-3< 0\))

\(=\sqrt{6}\)

5) \(2\sqrt{\frac{16}{3}}-3\sqrt{\frac{1}{27}}-6\sqrt{\frac{4}{75}}\)

\(=2\frac{4}{\sqrt{3}}-3.\frac{1}{3}-6\sqrt{\frac{2^2}{3.5^2}}\)

\(=\frac{8\sqrt{3}}{3}-1-6.\frac{2}{5}.\sqrt{\frac{1}{3}}\)

\(=8\frac{\sqrt{3}}{3}-1-\frac{12}{5}.\frac{\sqrt{3}}{3}\)

\(=\frac{28}{5}.\frac{\sqrt{3}}{3}-1\)

7 tháng 8 2018

 Báo cáo sai phạm

1) 2√5−√125−√80+√605

=2√5−√52.5−√42.5+√112.5

=2√5−5√5−4√5+11√5

=4√5

2) √15−√216+√33−12√6

=√15−√62.6+√33−12√6

=√15−6√6+√33−12√6

=√(√6)2−6√6+32+√(2√6)2−12√6+32

=√(√6−3)2+√(2√6−3)2

=|√6−3|+|2√6−3|

=3−√6+2√6−3  ( vi √6−3<0)

=√6

5) 2√163 −3√127 −6√475 

=24√3 −3.13 −6√223.52 

=8√33 −1−6.25 .√13 

=8√33 −1−125 .√33 

=285 .√33 −1

1) Ta có: \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+2}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}{\left(\sqrt{2}+\sqrt{3}+2\right)}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+2\right)\left(1+\sqrt{2}\right)}{\left(\sqrt{2}+\sqrt{3}+2\right)}\)

\(=1+\sqrt{2}\)

2) Ta có: \(2\sqrt{27}-6\sqrt{\frac{4}{3}}+\frac{3}{5}\sqrt{75}\)

\(=\sqrt{108}-\sqrt{36\cdot\frac{4}{3}}+\sqrt{75\cdot\frac{9}{25}}\)

\(=\sqrt{108}-\sqrt{48}+\sqrt{27}\)

\(=\sqrt{3}\left(6-4+3\right)\)

\(=5\sqrt{3}\)

3) Sửa đề: \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{192}\)

Ta có: \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{192}\)

\(=\sqrt{2}\cdot\sqrt{4}\cdot\sqrt{3}-10\sqrt{4}\cdot\sqrt{3}+16\cdot\sqrt{4}\cdot\sqrt{3}\)

\(=\sqrt{2}\cdot\sqrt{12}-10\sqrt{12}+16\sqrt{12}\)

\(=\sqrt{12}\left(\sqrt{2}-10+16\right)\)

\(=2\sqrt{3}\left(\sqrt{2}-6\right)\)

\(=2\sqrt{6}-12\sqrt{3}\)

4) Ta có: \(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)

\(=\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\frac{\sqrt{12}}{6}-\frac{2\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\)

\(=\frac{6\left(2-\sqrt{3}\right)+2\sqrt{3}-6+2\sqrt{3}}{6}\)

\(=\frac{12-6\sqrt{3}+2\sqrt{3}-6+2\sqrt{3}}{6}\)

\(=\frac{6-2\sqrt{3}}{6}\)

\(=\frac{2\sqrt{3}\left(\sqrt{3}-1\right)}{2\sqrt{3}\cdot\sqrt{3}}\)

\(=\frac{\sqrt{3}-1}{\sqrt{3}}\)

5) Ta có: \(\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right):\sqrt{15}\)

\(=\frac{\sqrt{3}\left(2+5+3\right)}{\sqrt{15}}=\frac{10}{\sqrt{5}}=2\sqrt{5}\)

6) Ta có: \(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)

\(=\sqrt{48\cdot\frac{1}{4}}-\sqrt{75\cdot4}-\sqrt{3}+5\sqrt{\frac{4}{3}}\)

\(=\sqrt{12}-\sqrt{300}-\sqrt{3}+\sqrt{25\cdot\frac{4}{3}}\)

\(=\sqrt{12}-\sqrt{300}-\sqrt{3}+\sqrt{\frac{100}{3}}\)

\(=\sqrt{3}\left(2-10-1+\frac{10}{3}\right)\)

\(=-\frac{17\sqrt{3}}{3}=-\frac{17}{\sqrt{3}}\)

12 tháng 4 2020

Cảm ơn bạn nha

AH
Akai Haruma
Giáo viên
1 tháng 12 2019

a)

\((2\sqrt{5}-\sqrt{7})(2\sqrt{5}+\sqrt{7})=(2\sqrt{5})^2-(\sqrt{7})^2=13\)

b)

\((\sqrt{5-2\sqrt{6}}+\sqrt{2})\sqrt{3}=(\sqrt{2+3-2\sqrt{2.3}}+\sqrt{2})\sqrt{3}\)

\(=(\sqrt{(\sqrt{3}-\sqrt{2})^2}+\sqrt{2})\sqrt{3}=(\sqrt{3}-\sqrt{2}+\sqrt{2})\sqrt{3}=\sqrt{3}.\sqrt{3}=3\)

c)

\(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{2^2+3-2.2\sqrt{3}}+\sqrt{2^2+3+2.2\sqrt{3}}\)

\(=\sqrt{(2-\sqrt{3})^2}+\sqrt{(2+\sqrt{3})^2}=2-\sqrt{3}+2+\sqrt{3}=4\)

AH
Akai Haruma
Giáo viên
1 tháng 12 2019

d)

\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}=\sqrt{3^2+6-2.3\sqrt{6}}+\sqrt{9+24-2\sqrt{9.24}}\)

\(=\sqrt{(3-\sqrt{6})^2}+\sqrt{(\sqrt{24}-3)^2}=3-\sqrt{6}+\sqrt{24}-3\)

\(=\sqrt{6}\)

e)

\(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}=\sqrt{\frac{6+2\sqrt{5}}{2}}+\sqrt{\frac{6-2\sqrt{5}}{2}}\)

\(=\sqrt{\frac{5+1+2\sqrt{5.1}}{2}}+\sqrt{\frac{5+1-2\sqrt{5.1}}{2}}=\sqrt{\frac{(\sqrt{5}+1)^2}{2}}+\sqrt{\frac{(\sqrt{5}-1)^2}{2}}\)

\(=\frac{\sqrt{5}+1}{\sqrt{2}}+\frac{\sqrt{5}-1}{\sqrt{2}}=\sqrt{10}\)

g)

\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}=\sqrt{3+5-2\sqrt{3.5}}-\sqrt{20+3-2\sqrt{20.3}}\)

\(=\sqrt{(\sqrt{5}-\sqrt{3})^2}-\sqrt{(\sqrt{20}-\sqrt{3})^2}\)

\(=\sqrt{5}-\sqrt{3}-(\sqrt{20}-\sqrt{3})=\sqrt{5}-\sqrt{20}=-\sqrt{5}\)