\(\sqrt{21+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2018

\(x^2=\left(\sqrt{21+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}\right)^2\)

\(x^2=21+6\sqrt{6}+21-6\sqrt{6}-2\sqrt{441-216}\)

\(x^2=42-2\sqrt{225}\)

\(x^2=42-30=12\)

\(x=2\sqrt{3}\)

nếu có sai bn thông cảm nha

4 tháng 7 2018

cách khác nhé:

\(\sqrt{21+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}\)

\(=\sqrt{21+2.3\sqrt{2}.\sqrt{3}}-\sqrt{21-2.3\sqrt{2}.\sqrt{3}}\)

\(=\sqrt{18+2.\sqrt{18}.\sqrt{3}+3}-\sqrt{18-2.\sqrt{18}.\sqrt{3}+3}\)

\(=\sqrt{\left(\sqrt{18}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}\)

\(=\left(\sqrt{18}+\sqrt{3}\right)-\left(\sqrt{18}-\sqrt{3}\right)\)

\(=2\sqrt{3}\)

p/s: mk đã phân tích kĩ ra cho bn rồi đó

11 tháng 2 2018

\(A=\sqrt{\left(3\sqrt{2}\right)^2+2.3\sqrt{2}.\sqrt{3}+\left(\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{2}\right)^2-2.3.\sqrt{2}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(A=\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)
\(A=3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}=6\sqrt{2}\)

11 tháng 2 2018

Cảm ơn ạ

1 tháng 8 2018

\(a.\sqrt{19-6\sqrt{2}}=\sqrt{18-2.3\sqrt{2}+1}=3\sqrt{2}-1\)

\(b.\sqrt{21+12\sqrt{3}}=\sqrt{12+2.2\sqrt{3}.3+9}=2\sqrt{3}+3\)

\(c.\sqrt{57-40\sqrt{2}}=\sqrt{32-2.4\sqrt{2}.5+25}=4\sqrt{2}-5\)

\(d.\sqrt{\left(5-2\sqrt{6}\right)\left(4-2\sqrt{3}\right)}=\sqrt{3-2\sqrt{3}.\sqrt{2}+2}.\sqrt{3-2\sqrt{3}+1}=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-1\right)\) \(e.\sqrt{21+6\sqrt{6}}+\sqrt{21-6\sqrt{6}}=\sqrt{18+2.3\sqrt{2}.\sqrt{3}+3}+\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}=3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}=6\sqrt{2}\) \(g.\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}=\sqrt{4-2.2\sqrt{3}+3}-\sqrt{4+2.2\sqrt{3}+3}=2-\sqrt{3}-2-\sqrt{3}=-2\sqrt{3}\)

1 tháng 8 2018

a)

=\(\sqrt{18-2.3\sqrt{2}.1+1}\)

\(=\sqrt{\left(3\sqrt{2}-1\right)^2}\)

\(=3\sqrt{2}-1\)

b)

=\(\sqrt{12+2.2\sqrt{3}.3+9}\)

=\(\sqrt{\left(2\sqrt{3}+3\right)^2}\)

=\(2\sqrt{3}+3\)

c)

=\(\sqrt{25-2.5.4\sqrt{2}+32}\)

=\(\sqrt{\left(5-4\sqrt{2}\right)^2}\)

=\(4\sqrt{2}-5\)

d)

\(=\sqrt{\left(3-2.\sqrt{3}.\sqrt{2}+2\right)\left(3-2\sqrt{3}+1\right)}\\ =\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2\left(\sqrt{3}-1\right)^2}\\ =\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-1\right)\\ =3-\sqrt{3}-\sqrt{6}+\sqrt{2}\)

e)

\(=\sqrt{18+2.3\sqrt{2}.\sqrt{3}+3}+\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}\\ =\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\\ =3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}\\ =6\sqrt{2}\)

g)

\(=\sqrt{4-2.2.\sqrt{3}+3}-\sqrt{4+2.2.\sqrt{3}+3}\\ =\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\\ =2-\sqrt{3}-2-\sqrt{3}\\ =-2\sqrt{3}\)

1 tháng 8 2017

câu a) \(\sqrt{5+2\sqrt{6}}+\sqrt{14-4\sqrt{6}}\)

26 tháng 5 2018

GG

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

25 tháng 12 2018

bạn làm bài nào thế ?

4 tháng 8 2016

a)\(\left(\sqrt{21}+7\right)\cdot\sqrt{10-2\sqrt{21}}\)

\(=\left(\sqrt{21}+7\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)

\(=\sqrt{7}\left(\sqrt{3}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{3}\right)\)

\(=\sqrt{7}\left(7-3\right)=4\sqrt{7}\)

b)\(\left(7+\sqrt{14}\right)\sqrt{9-2\sqrt{14}}\)

\(=\left(7+\sqrt{14}\right)\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)

\(=\sqrt{7}\left(\sqrt{7}+\sqrt{2}\right)\left(\sqrt{7}-\sqrt{2}\right)\)

\(=\sqrt{7}\left(7-2\right)=5\sqrt{7}\)

 

4 tháng 8 2016

giup minh voi minh can gap lam ok

AH
Akai Haruma
Giáo viên
7 tháng 7 2019

Lời giải:
\(A=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=\sqrt{\frac{6-2\sqrt{5}}{2}}+\sqrt{\frac{6+2\sqrt{5}}{2}}\)

\(=\sqrt{\frac{5-2\sqrt{5}+1}{2}}+\sqrt{\frac{5+2\sqrt{5}+1}{2}}=\sqrt{\frac{(\sqrt{5}-1)^2}{2}}+\sqrt{\frac{(\sqrt{5}+1)^2}{2}}\)

\(=\frac{\sqrt{5}-1}{\sqrt{2}}+\frac{\sqrt{5}+1}{\sqrt{2}}=2.\frac{\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)

\(B=\sqrt{21+6\sqrt{6}}+\sqrt{21-6\sqrt{6}}\)

\(=\sqrt{18+2\sqrt{18.3}+3}+\sqrt{18-2\sqrt{18.3}+3}\)

\(=\sqrt{(\sqrt{18}+\sqrt{3})^2}+\sqrt{(\sqrt{18}-\sqrt{3})^2}\)

\(=\sqrt{18}+\sqrt{3}+\sqrt{18}-\sqrt{3}=2\sqrt{18}=6\sqrt{2}\)

--------------

\(C=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(\Rightarrow C^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{(4+\sqrt{10+2\sqrt{5}})(4-\sqrt{10+2\sqrt{5}})}\)

\(8+2\sqrt{4^2-(10+2\sqrt{5})}=8+2\sqrt{6-2\sqrt{5}}\)

\(=8+2\sqrt{5-2\sqrt{5}+1}=8+2\sqrt{(\sqrt{5}-1)^2}\)

\(=8+2(\sqrt{5}-1)=6+2\sqrt{5}=(\sqrt{5}+1)^2\)

\(\Rightarrow C=\sqrt{5}+1\)

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:
\(A=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=\sqrt{\frac{6-2\sqrt{5}}{2}}+\sqrt{\frac{6+2\sqrt{5}}{2}}\)

\(=\sqrt{\frac{5-2\sqrt{5}+1}{2}}+\sqrt{\frac{5+2\sqrt{5}+1}{2}}=\sqrt{\frac{(\sqrt{5}-1)^2}{2}}+\sqrt{\frac{(\sqrt{5}+1)^2}{2}}\)

\(=\frac{\sqrt{5}-1}{\sqrt{2}}+\frac{\sqrt{5}+1}{\sqrt{2}}=2.\frac{\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)

\(B=\sqrt{21+6\sqrt{6}}+\sqrt{21-6\sqrt{6}}\)

\(=\sqrt{18+2\sqrt{18.3}+3}+\sqrt{18-2\sqrt{18.3}+3}\)

\(=\sqrt{(\sqrt{18}+\sqrt{3})^2}+\sqrt{(\sqrt{18}-\sqrt{3})^2}\)

\(=\sqrt{18}+\sqrt{3}+\sqrt{18}-\sqrt{3}=2\sqrt{18}=6\sqrt{2}\)

--------------

\(C=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(\Rightarrow C^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{(4+\sqrt{10+2\sqrt{5}})(4-\sqrt{10+2\sqrt{5}})}\)

\(8+2\sqrt{4^2-(10+2\sqrt{5})}=8+2\sqrt{6-2\sqrt{5}}\)

\(=8+2\sqrt{5-2\sqrt{5}+1}=8+2\sqrt{(\sqrt{5}-1)^2}\)

\(=8+2(\sqrt{5}-1)=6+2\sqrt{5}=(\sqrt{5}+1)^2\)

\(\Rightarrow C=\sqrt{5}+1\)

1 tháng 12 2017

1) \(\sqrt{36+12\sqrt{5}}=\sqrt{\left(\sqrt{30}+\sqrt{6}\right)^2}=\sqrt{30}+\sqrt{6}\)

2)\(\sqrt{21-6\sqrt{6}}=\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}=\sqrt{18}-\sqrt{3}\)

3)\(\sqrt{6-2\sqrt{5}}-\sqrt{9-4\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{9}-1\right)^2}\)

\(=\sqrt{5}-1-\left(\sqrt{9}-1\right)\)

\(=\sqrt{5}-\sqrt{9}\)

4)\(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)\(=\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}\)

\(=\sqrt{2}+1-\left(\sqrt{2-1}\right)=2\)

5) \(\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\sqrt{3}-1-\left(\sqrt{3}+1\right)=2\sqrt{3}\)

6)\(\sqrt{6+4\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=2+\sqrt{2}-\left(3-\sqrt{2}\right)=2\sqrt{2}-1\)

7)\(\sqrt{21-4\sqrt{5}}+\sqrt{21+4\sqrt{5}}=\sqrt{\left(\sqrt{20}-1\right)^2}+\sqrt{\left(\sqrt{20}+1\right)^2}\)

\(=\sqrt{20}-1+\sqrt{20+1}=2\sqrt{20}\)

17 tháng 6 2018

bài 3 sai kìa

14 tháng 7 2018

\(a.\sqrt{1+2\sqrt{2}+\sqrt{11+6\sqrt{2}}}=\sqrt{1+2\sqrt{2}+\sqrt{9+2.3\sqrt{2}+2}}=\sqrt{1+2\sqrt{2}+3+\sqrt{2}}=\sqrt{4+3\sqrt{2}}\)

\(b.\sqrt{10-2\sqrt{21}}+\sqrt{4+2\sqrt{3}}=\sqrt{7-2\sqrt{7}.\sqrt{3}+3}+\sqrt{3+2\sqrt{3}+1}=\sqrt{7}-\sqrt{3}+\sqrt{3}+1=\sqrt{7}+1\)

\(c.\sqrt{1+\dfrac{\sqrt{3}}{2}}+\sqrt{1-\dfrac{\sqrt{3}}{2}}=\sqrt{\dfrac{3}{4}+2.\dfrac{\sqrt{3}}{2}.\dfrac{1}{2}+\dfrac{1}{4}}+\sqrt{\dfrac{3}{4}-2.\dfrac{\sqrt{3}}{2}.\dfrac{1}{2}+\dfrac{1}{4}}=\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}=\sqrt{3}\)

\(d.\sqrt{15+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}=\sqrt{9+2.3\sqrt{6}+6}-\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}=3+\sqrt{6}-3\sqrt{2}+\sqrt{3}=\sqrt{3}\left(\sqrt{3}+\sqrt{2}-\sqrt{6}+1\right)\)