Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=4x-4x\sqrt{2}-2x\sqrt{2}+2x=6x-6x\sqrt{2}\)
b: \(=6x-4\sqrt{xy}+3\sqrt{xy}-2y=6x-\sqrt{xy}-2y\)
a: \(=-10\sqrt{2}+10-\left(18-2\cdot3\sqrt{2}\cdot5+25\right)\)
\(=-10\sqrt{2}+19-43+30\sqrt{2}\)
\(=-24+20\sqrt{2}\)
b: \(=2\sqrt{3a}-5\sqrt{3a}+a\cdot\sqrt{\dfrac{27}{4a}}-\dfrac{2}{5}\cdot10a\sqrt{3a}\)
\(=-3\sqrt{3a}-4a\sqrt{3a}+\sqrt{\dfrac{27a}{4}}\)
\(=-3\sqrt{3a}-4a\sqrt{3a}+\dfrac{3}{2}\sqrt{3a}\)
\(=\sqrt{3a}\left(-\dfrac{3}{2}-4a\right)\)
a: \(=1-\left(\sqrt{x}\right)^3=1-x\sqrt{x}\)
b: \(=\left(\sqrt{x}\right)^3+2^3=x\sqrt{x}+8\)
c: \(=\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3=x\sqrt{x}-y\sqrt{y}\)
d: \(=x^3+\left(\sqrt{y}\right)^3=x^3+y\sqrt{y}\)
a) Ta có: \(\sqrt{125}-4\sqrt{45}+3\sqrt{20}-\sqrt{80}\)
\(=5\sqrt{5}-4.3\sqrt{5}+3.2\sqrt{5}-4\sqrt{5}\)
\(=5\sqrt{5}-12\sqrt{5}+6\sqrt{5}-4\sqrt{5}\)
\(=-5\sqrt{5}\)
\(\approx-11,18033989\)
a) ...= \(\dfrac{1}{4}\).\(6\sqrt{5}\) +\(2\sqrt{5}\) - \(3\sqrt{5}\) +5
= \(\dfrac{3}{2}\sqrt{5}\) -\(\sqrt{5}\) +5
=5 - \(\dfrac{1}{2}\sqrt{5}\)
d) ...= \(\sqrt{\dfrac{a}{\left(1+b\right)^2}}\) . \(\sqrt{\dfrac{4a\left(1+b\right)^2}{15^2}}\)
= \(\sqrt{\dfrac{4a^2\left(1+b\right)^2}{\left(1+b\right)^2.15^2}}\) = \(\sqrt{\dfrac{4a^2}{15^2}}\)= \(\dfrac{2a}{15}\)
\(\sqrt{20}\cdot\sqrt{72}\cdot\sqrt{4,9}=\sqrt{20\cdot72\cdot4,9}=\sqrt{2\cdot10\cdot72\cdot4,9}\\ =\sqrt{144\cdot49}=\sqrt{144}\cdot\sqrt{49}=12\cdot7=84\)
Bài 2:
a) \(\sqrt{3a^3}\cdot\sqrt{12a}=\sqrt{3a^3\cdot12a}=\sqrt{36a^4}=6a^2\)
b) \(\sqrt{2a\cdot32ab^2}=\sqrt{64a^2b^2}=8ab\)