K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

Ô phép tính khủng. Cái này do bạn chế ra à !
 

13 tháng 2 2017

khủng chưa My Shipfriend

14 tháng 9 2017

\(x=9-\frac{1}{\sqrt{\frac{9}{4}-\sqrt{5}}}+\frac{1}{\sqrt{\frac{9}{4}+\sqrt{5}}}\)

\(=9-\frac{2}{\sqrt{9-4\sqrt{5}}}+\frac{2}{\sqrt{9+4\sqrt{5}}}\)

\(=9-\frac{2}{\sqrt{\left(\sqrt{5}-2\right)^2}}+\frac{2}{\sqrt{\left(\sqrt{5}+2\right)^2}}\)

\(=9-\frac{2}{\sqrt{5}-2}+\frac{2}{\sqrt{5}+2}\)

\(=9-\frac{4+2\sqrt{5}-2\sqrt{5}+4}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}\)

\(=9-\frac{8}{5-4}\)

= 1

\(f\left(x\right)=\left(1^4-3+1\right)^{2016}=1\)

8 tháng 10 2019

Ta có : \(\left(\frac{1}{\sqrt{\frac{9}{4}+\sqrt{5}}}-\frac{1}{\sqrt{\frac{9}{4}-\sqrt{5}}}\right)^2\)

\(=\frac{1}{\frac{9}{4}+\sqrt{5}}+\frac{1}{\frac{9}{4}-\sqrt{5}}-2.\frac{1}{\sqrt{\frac{9}{4}+\sqrt{5}}}.\frac{1}{\sqrt{\frac{9}{4}-\sqrt{5}}}\)

\(=\frac{\frac{9}{4}-\sqrt{5}+\frac{9}{4}+\sqrt{5}}{\frac{1}{16}}-2.\frac{1}{\frac{1}{4}}\)

\(=72-8=64\)

Mà \(\frac{1}{\sqrt{\frac{9}{4}+\sqrt{5}}}< \frac{1}{\sqrt{\frac{9}{4}-\sqrt{5}}}\)

\(\Rightarrow\frac{1}{\sqrt{\frac{9}{4}+\sqrt{5}}}-\frac{1}{\sqrt{\frac{9}{4}-\sqrt{5}}}< 0\)

Do đó : \(\frac{1}{\sqrt{\frac{9}{4}+\sqrt{5}}}-\frac{1}{\sqrt{\frac{9}{4}-\sqrt{5}}}=-8\)

Khi đó : \(x=9-8=1\)

Với x =1 ta có ;

\(f\left(1\right)=\left(1^4-3.1+1\right)^{2016}=\left(-1\right)^{2016}=1\)

Chúc bạn học tốt !!!

10 tháng 10 2017

Ta có:

\(\frac{1}{n\sqrt{n+4}+\left(n+4\right)\sqrt{n}}=\frac{1}{\sqrt{n\left(n+4\right)}\left(\sqrt{n}+\sqrt{n+4}\right)}\)

\(=\frac{\sqrt{n+4}-\sqrt{n}}{4\sqrt{n\left(n+4\right)}}=\frac{1}{4}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+4}}\right)\)

Áp dụng vào bài toán ta được

\(\frac{1}{1\sqrt{5}+5\sqrt{1}}+\frac{1}{5\sqrt{9}+9\sqrt{5}}+...+\frac{1}{2009\sqrt{2013}+2013\sqrt{2009}}\)

\(=\frac{1}{4}.\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{9}}+...+\frac{1}{\sqrt{2009}}-\frac{1}{\sqrt{2013}}\right)\)

\(=\frac{1}{4}.\left(1-\frac{1}{\sqrt{2013}}\right)\)

23 tháng 11 2019

Hỏi đáp Toán

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

k) ĐK: $x^2\geq 5$

PT $\Leftrightarrow 2\sqrt{x^2-5}-\frac{1}{3}\sqrt{x^2-5}+\frac{3}{4}\sqrt{x^2-5}-\frac{5}{12}\sqrt{x^2-5}=4$

$\Leftrightarrow 2\sqrt{x^2-5}=4$

$\Leftrightarrow \sqrt{x^2-5}=2$

$\Rightarrow x^2-5=4$

$\Leftrightarrow x^2=9\Rightarrow x=\pm 3$ (đều thỏa mãn)

l) ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 2\sqrt{x+1}+3\sqrt{x+1}-\sqrt{x+1}=4$

$\Leftrightarrow 4\sqrt{x+1}=4$

$\Leftrightarrow \sqrt{x+1}=1$

$\Rightarrow x+1=1$

$\Rightarrow x=0$

m) 

ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 4\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}+3\sqrt{x+1}$

$\Leftrightarrow 6\sqrt{x+1}=16+2\sqrt{x+1}$

$\Leftrightarrow 4\sqrt{x+1}=16$

$\Leftrightarrow \sqrt{x+1}=4$

$\Rightarrow x=15$ (thỏa mãn)

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

h) 

ĐKXĐ: $x\geq -5$

PT $\Leftrightarrow \sqrt{x+5}=6$

$\Rightarrow x+5=36\Rightarrow x=31$ (thỏa mãn)

i) ĐKXĐ: $x\geq 5$

PT \(\Leftrightarrow \sqrt{x-5}+4\sqrt{x-5}-\sqrt{x-5}=12\)

\(\Leftrightarrow 4\sqrt{x-5}=12\Leftrightarrow \sqrt{x-5}=3\Rightarrow x-5=9\Rightarrow x=14\) (thỏa mãn)

j) 

ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow 3\sqrt{2x}+\sqrt{2x}-6\sqrt{2x}+4=0$

$\Leftrightarrow -2\sqrt{2x}+4=0$

$\Leftrightarrow \sqrt{2x}=2$

$\Rightarrow x=2$ (thỏa mãn)