\(\frac{3}{4}\)+\(\frac{3}{28}+\frac{3}{70}+\frac{3}{13...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

A = \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{56}\)

\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{7.8}\)

  \(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{7}-\frac{1}{8}\)

  \(=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)

B = \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{11.13}\)

  \(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\)

  \(=1-\frac{1}{13}=\frac{12}{13}\)

19 tháng 3 2019

\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{56}\)

\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{7.8}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{8}\)

\(=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)

\(B=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{11.13}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\)

\(=1-\frac{1}{13}=\frac{12}{13}\)

4 tháng 8 2015

\(B=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)

\( B=\frac{1}{2}-\frac{1}{14}=\frac{3}{7}\)

\(C=\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+\frac{3}{208}=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}\)

\(C=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\)

\(C=\frac{1}{1}-\frac{1}{16}=\frac{15}{16}\)

10 tháng 3 2017

1) A = \(\frac{-15}{19}.\frac{23}{37}+\frac{14}{37}.\frac{15}{19}=\frac{15}{19}.\frac{-23}{37}+\frac{14}{37}.\frac{15}{19}=\frac{15}{19}.\left(\frac{-23}{37}+\frac{14}{37}\right)=\frac{15}{19}.\frac{-9}{37}=\frac{-135}{703}\) 

10 tháng 3 2017

TRẢ LỜI ĐI MAI CẦN NỘP !!!

14 tháng 4 2019

c)  \(A=\frac{6}{4}+\frac{6}{28}+\frac{6}{70}+\frac{6}{130}+\frac{6}{208}\) 

\(=\frac{6}{1.4}+\frac{6}{4.7}+\frac{6}{7.10}+\frac{6}{10.13}+\frac{6}{13.16}\) 

\(=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right)\)

\(=2\left(1-\frac{1}{16}\right)\) 

\(=2.\frac{15}{16}\) 

\(=\frac{15}{8}\) 

Vậy A=\(\frac{15}{8}\)

14 tháng 4 2019

a) \(\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+...+\frac{3^2}{97.100}\)

\(=3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

\(=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(=3\left(1-\frac{1}{100}\right)\)

\(=3.\frac{99}{100}=\frac{297}{100}\)

S= - 32\(\left(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+...+\frac{1}{868}\right)\)

S = - 32\(\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{28.31}\right)\)

S = - 3\(\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{28.31}\right)\)

S = -3\(\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{28}-\frac{1}{31}\right)\)

S = -3 \(\left(1-\frac{1}{31}\right)\)

S = -3\(.\frac{30}{31}\)

S = -90/31

26 tháng 4 2017

1/3S=-(1/1*4+1/4*7+1/7*10+...+1/28*31)=-(1/1-1/4+1/4-1/7+1/7-1/10+...+1/28-1/31)=-(1/1-1/31)=-30/31

=>S=(-30/31):1/3=-90/31

10 tháng 4 2017

Mọi người hướng dẫn mình làm bài này với 

10 tháng 4 2017

\(S=\frac{3^2}{4}-\frac{3^2}{4.7}-\frac{3^2}{7.10}-...-\frac{3^2}{28.31}\)

\(S=\frac{3^2}{4}-\left(\frac{3^2}{4.7}+\frac{3^2}{7.10}+...+\frac{3^2}{28.31}\right)\)

\(S=\frac{9}{4}-3.\left(\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{28.31}\right)\)

\(S=\frac{9}{4}-3.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{28}-\frac{1}{31}\right)\)

\(S=\frac{9}{4}-3.\left(1-\frac{1}{31}\right)\)

\(S=\frac{9}{4}-3.\frac{30}{31}=\frac{9}{4}-\frac{90}{31}=\frac{-81}{124}\)

24 tháng 4 2019

\(A=3\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+.....+\frac{3}{55\cdot58}\right)\)

\(A=3\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{55}-\frac{1}{58}\right)\)

\(A=3\left(1-\frac{1}{58}\right)\)

\(A=3-\frac{1}{174}< 3< \frac{10}{3}\)

31 tháng 8 2016

\(A=\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+\frac{1}{130}+...+\frac{1}{9700}\)

\(A=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{97.100}\)

\(A=\frac{3}{3}\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{97.100}\right)\)

\(A=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{97.100}\right)\)

\(A=\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=\frac{1}{3}\left(1-\frac{1}{100}\right)\)

\(A=\frac{1}{3}.\frac{99}{100}=\frac{33}{100}\)

27 tháng 3 2018

\(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+\frac{1}{130}+...+\frac{1}{9700}\)

\(=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}\)

\(=\frac{100}{100}-\frac{1}{100}\)

\(=\frac{99}{100}\)

16 tháng 1 2016

a) \(\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+\frac{3}{208}+\frac{3}{304}+\frac{3}{418}+\frac{3}{550}\)

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}+\frac{3}{19.22}+\frac{3}{22.25}\)

\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+\frac{1}{19}-\frac{1}{22}+\frac{1}{22}-\frac{1}{25}\)

\(\frac{1}{1}-\frac{1}{25}\)

\(\frac{24}{25}\)

b) \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2n+1\right).\left(2n+3\right)}\)

\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n+1}-\frac{1}{2n+3}\)

\(\frac{1}{1}-\frac{1}{2n+3}\)

\(\frac{2n+2}{2n+3}\)

c) \(\frac{7+\frac{7}{13}-\frac{7}{48}+\frac{7}{95}}{15+\frac{15}{13}-\frac{15}{48}+\frac{15}{95}}-\frac{7070707}{15151515}\)

\(\frac{7\left(1+\frac{1}{13}-\frac{1}{48}+\frac{1}{95}\right)}{15\left(1+\frac{1}{13}-\frac{1}{48}+\frac{1}{95}\right)}-\frac{7.1010101}{15.1010101}\)

\(\frac{7}{15}-\frac{7}{15}\)

= 0

16 tháng 1 2016

a) 24/25

b) (2n+2)/(2n+3)

c) 0

sai thì thôi nhé