Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng tính chất kết hợp của phép cộng các phân thức, tính dần từ trái sang phải:
\(A=\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(A=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(A=\frac{8}{1-x^8}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(A=\frac{16}{1-x^{16}}+\frac{16}{1+x^{16}}\)
\(A=\frac{32}{1-x^{32}}\)
\(A=\frac{x^4-\left(x-1\right)^2}{\left(x^2+1\right)^2-x^2}+\frac{x^2-\left(x^2-1\right)^2}{x^2\left(x+1\right)^2-1}+\frac{x^2\left(x-1\right)^2-1}{x^4-\left(x+1\right)^2}\)
\(=\frac{\left(x^2-x+1\right)\left(x^2+x-1\right)}{\left(x^2+1+x\right)\left(x^2+1-x\right)}+\frac{\left(x-x^2+1\right)\left(x+x^2-1\right)}{\left(x^2+x-1\right)\left(x^2+x+1\right)}+\frac{\left(x^2-x-1\right)\left(x^2-x+1\right)}{\left(x^2-x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{x^2+x-1}{x^2+x+1}+\frac{x-x^2+1}{x^2+x+1}+\frac{x^2-x+1}{x^2+x+1}\)
\(=\frac{x^2+x-1+x-x^2+1+x^2-x+1}{x^2+x+1}\)
\(=\frac{x^2+x+1}{x^2+x+1}\)
= 1
Đặt \(t=\left(x+\frac{1}{x}\right)^2\)\(\Rightarrow\)\(x^2+\frac{1}{x^2}=t-2\)điều kiện t>=0,x # 0
Phương trình trở thành
8t +4(t-2)2 - 4(t-2)2t =(x+4)2
8t + 4t2 - 16t + 16 -4t3 + 16t2 - 16t=(x+4)2
-4t3 + 20t2 -24t=x2 +8x
-4t(t2 -5t +6)=x(x+8)
-4t(t-2)(t-3)=x(x+8)
Mình chỉ giúp dược tới đó
Ta có: \(\frac{1}{n\left(n+1\right)}=\frac{\left(n+1\right)-n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\left(n\in N\right)\)
Như vậy,
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}\)
\(=\frac{1}{x}-\frac{1}{x+5}=\frac{x+5}{x\left(x+5\right)}-\frac{x}{x\left(x+5\right)}=\frac{x+5-x}{x\left(x+5\right)}=\frac{5}{x\left(x+5\right)}\)
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}\)
\(=\frac{1}{x}-\frac{1}{x+6}=\frac{x+6}{x.\left(x+6\right)}-\frac{x}{x.\left(x+6\right)}=\frac{6}{x^2+6x}\)
a) Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)\)
\(=\left(x-3\right)\left(x^2+x\cdot3+3^2\right)\)
\(=x^3-3^3=x^3-27\)
b) Ta có: \(\left(x-2\right)\left(x^2+2x+4\right)\)
\(=\left(x-2\right)\left(x^2+x\cdot2+2^2\right)\)
\(=x^3-2^3=x^3-8\)
c) Ta có: \(\left(x+4\right)\left(x^2-4x+16\right)\)
\(=\left(x+4\right)\left(x^2-x\cdot4+4^2\right)\)
\(=x^3+4^3=x^3+64\)
d) Ta có: \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
\(=\left(x-3y\right)\left[x^2+x\cdot3y+\left(3y\right)^2\right]\)
\(=x^3-\left(3y\right)^3=x^3-27y^3\)
e) Ta có: \(\left(x^2-\frac{1}{3}\right)\left(x^4+\frac{1}{3}x^2+\frac{1}{9}\right)\)
\(=\left(x^2-\frac{1}{3}\right)\left[\left(x^2\right)^2+x^2\cdot\frac{1}{3}+\left(\frac{1}{3}\right)^2\right]\)
\(=\left(x^2\right)^3-\left(\frac{1}{3}\right)^3\)
\(=x^6-\frac{1}{27}\)
f) Ta có: \(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)\)
\(=\left(\frac{1}{3}x+2y\right)\left[\left(\frac{1}{3}x\right)^2-\frac{1}{3}x\cdot2y+\left(2y\right)^2\right]\)
\(=\left(\frac{1}{3}x\right)^3+\left(2y\right)^3\)
\(=\frac{1}{27}x^3+8y^3\)