Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2016\times2018+2}{2016\times2017+2018}=\frac{2016\times\left(2017+1\right)+2}{2016\times2017+2018}=\)\(=\frac{2016\times2017+2016+2}{2016\times2017+2018}=\frac{2016\times2017+2018}{2016\times2017+2018}=1\)
bài 1
Ta có : 2016/2017<1
2017/2018<1
Nên 2016/2017=2017/2018
Bài 1 :
a) Ta có : \(\frac{2016}{2017}=1-\frac{1}{2017}\)
\(\frac{2017}{2018}=1-\frac{1}{2018}\)
Vì \(-\frac{1}{2017}< -\frac{1}{2018}\)nên \(\frac{2016}{2017}< \frac{2017}{2018}\)
b) Ta có : \(\frac{2018}{2017}=1+\frac{1}{2017}\)
\(\frac{2017}{2016}=1+\frac{1}{2016}\)
Vì \(\frac{1}{2017}< \frac{1}{2016}\) nên \(\frac{2018}{2017}< \frac{2017}{2016}\)
Câu 2 :
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{101.103}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{101.103}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{101}-\frac{1}{103}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{103}\right)\)
\(=\frac{1}{2}.\frac{102}{103}=\frac{51}{103}\)
Ta có:
\(\frac{2017.2019}{2018.2018}\)
\(=\frac{2017.\left(2018+1\right)}{\left(2017+1\right).2018}\)
\(=\frac{2017.2018+2017}{2017.2018+2018}\)
Vì \(2017.2018+2017< 2017.2018+2018\)( tử nhỏ hơn mẫu )
\(\Rightarrow\frac{2017.2018+2017}{2017.2018+2018}< 1\)
Vậy \(\frac{2017.2019}{2018.2018}< 1\)
( Mk nghĩ vậy )
~~~~~~~Hok tốt~~~~~~~
\(\frac{2017.2019}{2018.2018}=\frac{2017.\left(2018+1\right)}{2018.\left(2017+1\right)}=\frac{2017.2018+2017}{2018.2017+2018}\)
\(2017< 2018\Rightarrow2017.2018+2017< 2018.2017+2018\Rightarrow\frac{2017.2018+2017}{2018.2017+2018}< 1\Rightarrow\frac{2017.2019}{2018.2018}< 1\)
\(\frac{2016}{2017}< \frac{2017}{2018}\)
Đúng 100%
Đúng 100%
Đúng 100%
Dễ thấy \(\dfrac{2017}{2017}=1;\dfrac{2017}{2018}< 1;\dfrac{18}{17}>1;\dfrac{2018}{2017}>1\)
Vậy cần so sánh \(\dfrac{18}{17}=1+\dfrac{1}{17}\) và \(\dfrac{2018}{2017}=1+\dfrac{1}{2017}\)
Mà \(17< 2017\Rightarrow\dfrac{1}{17}>\dfrac{1}{2017}\)
\(\Rightarrow\dfrac{18}{17}>\dfrac{2018}{2017}\)
Vậy phân số lớn nhất là \(\dfrac{18}{17}\)
a) So sánh \(\frac{2017}{2018}\)với \(\frac{2017}{2019}\)ta thấy \(\frac{2017}{2018}\) lớn hơn\(\frac{2017}{2019}\)(vì có chung tử nên số nào có mẫu lớn hơn thì nhỏ hơn và ngược lại
Tương tự so sánh \(\frac{2017}{2019}\)với\(\frac{2018}{2019}\)ta thấy \(\frac{2017}{2019}\)nhỏ hơn\(\frac{2018}{2019}\)
\(\Rightarrow\frac{2017}{2018}>\frac{2017}{2019}>\frac{2018}{2019}\)hay \(\frac{2017}{2018}\)>\(\frac{2018}{2019}\)
= (2015 + 1) x 2017 - 2015 x ( 2017 + 1)
= 2015 x 2017 + 2017 x 1 - 2015 x 2017 + 2015 x 1
= 2017 x 1 - 2015 x 1 ( bớt 2 vế đi 2015 x 2017)
= 1 x ( 2017 - 2015)
= 1 x 2
= 2
= 4032
\(\frac{2018\cdot2016-1210}{2017\cdot2016+806}=\frac{2017\cdot2016+2016-1210}{2017\cdot2016+806}=\frac{2017\cdot2016+806}{2017\cdot2016+806}=1\)
= ( 2017 + 1) . 2016 - 1210 / 2017 . 2016 + 806
= 2016 .2017 + 2016 - 1210 / 2017 . 2016 + 806
= 2016 . 2017 + 806 / 2017 . 2016 + 806
= 1