K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2019

biết làm bài 1 thôi

\(\left(\frac{1}{2}+1\right)\times\left(\frac{1}{3}+1\right)\times\cdot\cdot\cdot\times\left(\frac{1}{999}+1\right)\)

\(\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times\cdot\cdot\cdot\times\frac{1000}{999}\)

lượt bỏ đi còn :

\(\frac{1000}{2}=500\)

1 tháng 2 2018

các bạn giúp mình với nhé

15 tháng 3 2019

Ta có (1-1/2).(1-1/3^2).(1-1/4^2).....(1-1/10^2)

    =(2^2-1/2^2).(3^2-1/3^2).....(10^2-1/10)

   =(1.3/2^2).(2.4/3^2).....(9.11/10^2)

  =11/20

22 tháng 3 2018

\(D=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)

\(D=\left(\frac{3}{2\cdot2}\right)\left(\frac{8}{3\cdot3}\right)\left(\frac{15}{4\cdot4}\right)...\left(\frac{9999}{100\cdot100}\right)\)

\(D=\frac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(99\cdot101\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(100\cdot100\right)}\)

\(D=\frac{\left(1\cdot2\cdot3\cdot...\cdot99\right)\left(3\cdot4\cdot5\cdot...\cdot101\right)}{\left(2\cdot3\cdot4\cdot...\cdot100\right)\left(2\cdot3\cdot4\cdot...\cdot100\right)}\)

\(D=\frac{1\cdot101}{100\cdot2}\)

\(=\frac{101}{200}\)

22 tháng 3 2018

\(D=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\cdot\cdot\cdot\left(\frac{1}{100^2}-1\right)\)(có 50 thừa số nên tích đó là số dương)

\(\Rightarrow D=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)\cdot\cdot\cdot\left(\frac{100^2-1}{100^2}\right)\)

\(D=\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot\cdot\cdot\frac{99\cdot101}{100^2}\)

\(D=\frac{101}{2\cdot100}=\frac{101}{200}\)

\(A=1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+...+\frac{1}{16}.\left(1+2+...+16\right)\)

\(=1+\frac{1}{2}.2.3:2+\frac{1}{3}.3.4:2+...+\frac{1}{16}.16.17:2=1+\frac{3}{2}+\frac{4}{2}+...+\frac{17}{2}=\frac{2+3+4+...+17}{2}=\frac{152}{2}=76\)

 

2 tháng 7 2015

\(d=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right).........\left(1+\frac{1}{99.101}\right)\)

    \(=\frac{4}{3}.\frac{9}{2.4}.............\frac{10000}{99.101}\)

    \(=\frac{2.2}{3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}............\frac{100.100}{99.101}\)

    \(=\frac{2.3.4..........100}{2.3.4............99}.\frac{2.3.4...........100}{3.4...........101}\)

     \(=100.\frac{2}{101}\)\(=\frac{200}{101}\)

31 tháng 3 2016

\(C=\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times...\times\left(1-\frac{1}{1994}\right)\)

    \(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{1993}{1994}\)

    \(=\frac{1\times2\times3\times...\times1993}{2\times3\times4\times...\times1994}\)

    \(=\frac{1}{1994}\)                         (Giản ước còn lại như này)

15 tháng 8 2016

\(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot...\cdot\left(1-\frac{1}{100}\right)\)

\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{99}{100}\)

\(=\frac{1\cdot2\cdot3\cdot...\cdot99}{2\cdot3\cdot4\cdot...\cdot100}\)

\(=\frac{1}{100}\)

15 tháng 8 2016

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{100}\right)=\frac{2-1}{2}.\frac{3-1}{3}.\frac{4-1}{4}...\frac{100-1}{100}=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}=\frac{1}{100}\)